INTERPRETERS AND TAIL CALLS

COMPUTER SCIENCE 61A

April 6, 2017

Calculator

We are beginning to dive into the realm of interpreting computer programs — that is, writ-
ing programs that understand other programs. In order to do so, we’ll have to examine
programming languages in-depth. The Calculator language, a subset of Scheme, was the
first of these examples. In today’s discussion, we’ll be extending Calculator with variables
and user-defined functions.

The Calculator language is a Scheme-syntax language that currently includes only the
four basic arithmetic operations: +, —, %, and /. These operations can be nested and can
take varying numbers of arguments. Here’s a few examples of Calculator in action:
calc> (+ 2 2)

4

calc> (= 5)
-5

calc> (» (+ 1 2) (+ 2 3))
15

Our goal now is to write an interpreter for this language, and extend its functionality to
variables and user-defined functions. The job of an interpreter is to evaluate expressions.
So, let’s talk about expressions. A Calculator expression is just like a Scheme list. To
represent Scheme lists in Python, we use Pair objects. For example, the list (+ 1 2) is
represented as Pair (' +’, Pair(l, Pair(2, nil))).ThePair classisthe same as
the Scheme procedure cons, which would represent the same list as (cons "+ (cons
1 (cons 2 nil))).

DISCUSSION 9: INTERPRETERS AND TAIL CALLS Page 2
Pair is very similar to Link, the class we developed for representing linked lists, except
that the second attribute doesn’t have to be a linked list. In addition to Pair objects, we
include a nil object to represent the empty list. Pair instances have methods:

1. __len__, which returns the length of the list.
2. _getitem_., which allows indexing into the pair.
3. map, which applies a function, £n, to all of the elements in the list.

nil has the methods __len_, _getitem__, and map. Here’s an implementation of what
we described:

class nil:
"""Represents the special empty pair nil in Scheme."""
def _ repr_ (self):
return 'nil'
def _ len_ (self):
return 0
def _ getitem (self, 1i):
raise IndexError ('Index out of range')
def map(self, fn):
return nil

nil = nil() # this hides the nil class *foreverx

class Pair:
"""Represents the built-in pair data structure in Scheme."""

def = init_ (self, first, second):
self.first = first
self.second = second
def _ repr_ (self):
return 'Pair({}, {})'.format (self.first, self.second)

def _ len_ (self):
return 1 + len(self.second)
def _ getitem_ (self, 1i):
if i ==
return self.first
return self.second[i-1]
def map(self, fn):

return Pair(fn(self.first), self.second.map(fn))

CS 61A Spring 2017

DISCUSSION 9: INTERPRETERS AND TAIL CALLS Page 3
1.1 Questions

1. Translate the following Calculator expressions into calls to the Pair constructor.
> (+1 2 (- 3 4))

> (+ 1 (« 2 3) 4)

2. Translate the following Python representations of Calculator expressions into the proper
Scheme syntax:

>>> Pair('+', Pair(l, Pair (2, Pair (3, Pair (4, nil)))))
>>> Pair('+', Pair(l, Pair(Pair('x', Pair (2, Pair(3, nil))), nil)))
Evaluation

Evaluation discovers the form of an expression and executes a corresponding evaluation
rule.

We'll go over two such expressions now:

1. Primitive expressions are evaluated directly. For example, the numbers 3.14 and 165
just evaluate to themselves, and the string “+” evaluates to the calc_add function.

2. Call expressions are evaluated in the same way you've been doing them all semester:
(1) Evaluate the operator.
(2) Evaluate the operands from left to right.
(3) Apply the operator to the operands.

CS 61A Spring 2017

DISCUSSION 9: INTERPRETERS AND TAIL CALLS Page 4
Here’s calc_eval:

def calc_eval (exp) :
"""Evaluates a Calculator expression represented as a Pair.
mwmmwn
if isinstance (exp, Pair):
return calc_apply(calc_eval (exp.first),
list (exp.second.map(calc_eval)))
elif exp in OPERATORS:
return OPERATORS [exp]
else: # Primitive expression
return exp

And here’s calc_apply:
def calc_apply(op, args):

"""Applies an operator to a Pair of arguments."""
return op (xargs)

2.1 Questions

1. Suppose we typed each of the following expressions into the Calculator interpreter.
How many calls to calc_eval would they each generate? How many calls to calc_apply?
> (+ 2 4 6 8)

> (+ 2 (« 4 (= 6 8)))

2. Alyssa P. Hacker and Ben Bitdiddle are also tasked with implementing the and oper-
ator,asin (and (= 1 2) (< 3 4)).Bensays this is easy: they just have to follow
the same process as in implementing » and /. Alyssa is not so sure. Who's right?

CS 61A Spring 2017

DI1SCUSSION 9: INTERPRETERS AND TAIL CALLS Page 5

3. Now that you've had a chance to think about it, you decide to try implementing and
yourself. You may assume the conditional operators (e.g. <, >, =, etc) have already been
implemented for you.
def calc_eval (exp) :

def eval_and(operands) :

CS 61A Spring 2017

DI1SCUSSION 9: INTERPRETERS AND TAIL CALLS Page 6

Tail-Call Optimization

Scheme implements tail-call optimization, which allows programmers to write recursive
functions that use a constant amount of space. A tail call occurs when a function calls
another function as its last action of the current frame. Because in this case Scheme
won’t make any further variable lookups in the frame, the frame is no longer needed, and
we can remove it from memory. In other words, if this is the last thing you are going to
do in a function call, we can reuse the current frame instead of making a new frame.

Consider this version of factorial that does not use tail calls:
(define (fact n)
(if (= n 0) 1
(» n (fact (= n 1)))))

The recursive call occurs in the last line, but it is not the last expression evaluated. After
calling (fact (- n 1)), the function still needs to multiply that result with n. The
tinal expression that is evaluated is a call to the multiplication function, not fact itself.
Therefore, the recursive call is not a tail call.

However, we can rewrite this function using a helper function that remembers the tem-
porary product that we have calculated so far in each recursive step.
(define (fact n)
(define (fact-tail n result)
(if (= n 0) result
(fact-tail (- n 1) (x n result))))
(fact-tail n 1))

fact-tail makes a single recursive call to fact-tail that is the last expression to
be evaluated, so it is a tail call. Therefore, fact-tail is a tail recursive process. Tail
recursive processes can take a constant amount of memory because each recursive call
frame does not need to be saved. Our original implementation of fact required the
program to keep each frame open because the last expression multiplies the recursive
result with n. Therefore, at each frame, we need to remember the current value of n.

In contrast, the tail recursive fact-tail does not require the interpreter to remember
the values for n or result in each frame. Instead, we can just update the value of n
and result of the current frame! Therefore, we can carry out the calculation using only
enough memory for a single frame.

3.1 Identifying tail calls

A function call is a tail call if it is in a tail context (but a tail call might not be a recursive tail
call as seen above in the first fact definition). Tail context simply means the expression

CS 61A Spring 2017

DISCUSSION 9: INTERPRETERS AND TAIL CALLS Page 7
is the last to be evaluated in that form. For example, we consider the following to be tail
contexts:

¢ the last sub-expression in a lambda’s body

¢ the second or third sub-expression in an if form

* any of the non-predicate sub-expressions in a cond form
¢ the last sub-expression in an and or an or form

¢ the last sub-expression in a begin’s body

These make sense intuitively because the last expression to be evaluated in an i f form is
not the condition, but rather either the second or third sub-expressions which are evalu-
ated depending on if the condition is True or False. See if you can reason through why
the others above are considered in tail context as well.

Before we jump into questions, a quick tip for defining tail recursive functions is to use
helper functions. A helper function should have all the arguments from the parent func-
tion, plus additional arguments like total or counter or result.

1. For each of the following functions, identify whether it contains a recursive call in a
tail context. Also indicate if it uses a constant number of frames.
(define (gquestion—-a x)
(if (= x 0)
0
(+ x (question-a (- x 1)))))

(define (question-b x vy)
(if (= x 0)
Yy
(question-b (- x 1) (+ v x))))

(define (question-c x V)
(1f (> x vy)
(question-c (- y 1) x)
(question-c (+ x 10) v)))

(define (question-d n)
(1f (question—-d n)
(question-d (- n 1))
(question-d (+ n 10))))

CS 61A Spring 2017

DI1SCUSSION 9: INTERPRETERS AND TAIL CALLS Page 8

2. Write a tail recursive function that returns the nth fibonacci number. We define fib(0) =
0 and fib(1) = 1.
(define (fib n)

3. Write a tail recursive function, sum, that takes in a Scheme list and returns the numer-
ical sum of all values in the list.
(define (sum 1lst)

4. Write a tail recursive function, insert, that takes in a number and a sorted list. The
function returns a sorted copy with the number inserted in the correct position.
(define (insert n 1lst)

CS 61A Spring 2017

