SCHEME

COMPUTER SCIENCE 61A

March 23,2017

Introduction

In the next part of the course, we will be working with the Scheme programming lan-
guage. In addition to learning how to write Scheme programs, we will eventually write a
Scheme interpreter in Project 4!

Scheme is a dialect of the Lisp programming language, a language dating back to 1958.
The popularity of Scheme within the programming language community stems from its
simplicity — in fact, previous versions of CS 61A were taught in the Scheme language.

Primitives

Scheme has a set of atomic primitive expressions. Atomic means that these expressions
cannot be divided up.

scm> 123

123

scm> 123.123
123.123

scm> #t

True

scm> #f
False

Unlike in Python, the only primitive in Scheme that is a false value is #f and its equiv-
alents, false and False. The define special form defines variables and procedures

DISCUSSION 8: SCHEME Page 2
by binding a value to a variable, just like the assignment statement in Python. When a
variable is defined, the de fine special form returns a symbol of its name. A procedure
is what we call a function in Scheme!

The syntax to define a variable and procedure are:
® (define <variable name> <value>)

¢ (define (<function name> <parameters>)<function body>)

scm> (define a 3) ; a =3

a

scm> a

3

scm> (define (foo x) x) ; procedure named foo
foo

scm> (foo a)

3

2.1 Questions

1. What would Scheme print?
scm> (define a 1)

scm> a

scm> (define b a)

scm> b

scm> (define c 'a)

scm> C

CS 61A Spring 2017

DISCUSSION 8: SCHEME Page 3

Call Expressions

Scheme call expressions follow prefix notation, where an operator is followed by zero
or more operand subexpressions. Operators may be symbols, such as + and » or more
complex expressions, as long as they evaluate to procedure values.

scm> (= 1 1) ;01— 1

0

scm> (/ 8 4 2) ; 8/ 4/ 2

1

scm> (« (+# 1 2) (+ 1 2)) ; (L + 2) = (1 + 2)
9

To call a function in Scheme, you first need a set of parentheses. Inside the parentheses,
you specify a function, then the arguments (remember the spaces!).

Evaluating a Scheme function call works just like Python:

1. Evaluate the operator (the first expression after the (), then evaluate each of the
operands.

2. Apply the operator to those evaluated operands.

When you evaluate (+ 1 2), you evaluate the + symbol, which is bound to a built-in
addition function. Then, you evaluate 1 and 2, which are primitives. Finally, you apply
the addition function to 1 and 2.

Some important built-in functions you’ll want to know are:
® t, -, %, /

® equal?, =, >, >=,<,<=

3.1 Questions

1. What would Scheme print?
scm> (+ 1)

scm> (* 3)

scm> (+ (x 3 3) (x 4 4))
scm> (define a (define b 3))
scm> a

scm> b

CS 61A Spring 2017

DISCUSSION 8: SCHEME Page 4

Special Forms

There are certain expressions that look like function calls, but don't follow the rule for
order of evaluation. These are called special forms. You've already seen one — define,
where the first argument, the variable name, doesn’t actually get evaluated to a value.

4.1 If Statements

Another common special form is the i £ form. An if expression looks like:
(if <condition> <then> <else>)

where <condition>, <then>and <else> are expressions. First, <condition> iseval-
uated. If it evaluates to #t, then <then> is evaluated. Otherwise, <else> is evaluated.
Remember that only False and #f are false-y values; everything else is truth-y.

scm> (if (< 4 5) 1 2)

1

scm> (if #f (/ 1 0) 42)

42

4.2 Boolean Operators

Scheme also has boolean operators and, or, and not like in Python! In addition, and and
or are also special forms because they are short-circuiting operators.
scm> (and 1 2 3)

3

scm> (or 1 2 3)

1

scm> (or True (/ 1 0))
True

scm> (and False (/1 0))
False

scm> (not 3)

False

scm> (not True)

False

CS 61A Spring 2017

DISCUSSION 8: SCHEME Page 5
4.3 Questions

1. What does Scheme print?
scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

scm> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (x 3 2)))
scm> ((if (< 4 3) + =) 4 100)

scm> (if 0 1 2)

4.4 Lambdas and Defining Functions

Scheme has lambdas too! The syntax is
(lambda (<PARAMETERS>)<EXPR>)

Like in Python, lambdas are function values. Also like in Python, when a lambda expres-
sion is called in Scheme, a new frame is created where the parameters are bound to the
arguments passed in. Then, <EXPR> is evaluated in this new frame. Note that <EXPR> is
not evaluated until the lambda function is called.

scm> (define x 3)

X

scm> (define y 4)

y

scm> ((lambda (x y) (+ x y)) 6 7)

13

Like in Python, lambda functions are also values! So you can do this to define functions:
scm> (define square (lambda (x) (* x X)))

square

scm> (square 4)

16

Whenyoudo (define (<FUNCTION NAME> <PARAMETERS>) <EXPR>),Scheme will
automatically transformitto (define <FUNCTION NAME> (lambda (<PARAMETERS>)
<EXPR>)). In this way, lambdas are more central to Scheme than they are to Python.

CS 61A Spring 2017

DISCUSSION 8: SCHEME Page 6
4.5 Let

There is also a special form based around 1ambda: let. The structure of 1et is as follows:
(let ((<SYMBOL1l> <EXPR1>)

(<SYMBOLN> <EXPRN>))
<BODY>)

This special form is really just equivalent to:
((lambda (<SYMBOL1> ... <SYMBOLN>) <BODY>) <EXPR1> ... <EXPRN>)

let effectively binds symbols to expressions, then runs the body of the let form. This can
be useful if you need to reuse a value multiple times, or if you want to make your code
more readable.

For example, we can use the approximation sin(z) ~ x (which is true for small =) and the
trigonometric identity sin(z) = 3sin(x/3) — 4sin®(x/3) to approximate sin(z) for any z.
(define (sin x)
(if (< x 0.000001)

X

(let ((recursive-step (sin (/ x 3))))

(= (* 3 recursive-step)

(x 4 (expt recursive-step 3))))))

4.6 Questions

1. Write a function that calculates factorial. (Note we have not seen any iteration yet.)
(define (factorial x)

2. Write a function that calculates the n** Fibonacci number.
(define (fib n)
(if (< n 2)
1

CS 61A Spring 2017

DISCUSSION 8: SCHEME Page 7

Pairs and Lists

To construct a (linked) list in Scheme, you can use the constructor cons (which takes
two arguments). nil represents the empty list. If you have a linked list in Scheme,
you can use selector car to get the first element and selector cdr to get the rest of the
list. (car and cdr don’t stand for anything anymore, but if you want the history go to
http://en.wikipedia.org/wiki/CAR_and_CDR.)

scm> nil

()

scm> (null? nil)

#t

scm> (cons 2 nil)

(2)

scm> (cons 3 (cons 2 nil))

(3 2)

scm> (define a (cons 3 (cons 2 nil)))
a

scm> (car a)

3

scm> (cdr a)

(2)

scm> (car (cdr a))
2

scm> (define (len a)
(if (null? a)
0
(+ 1 (len (cdr a)))))
len
scm> (len a)

CS 61A Spring 2017

http://en.wikipedia.org/wiki/CAR_and_CDR

DISCUSSION 8: SCHEME Page 8
If a list is a "good looking” Iist, like the ones above where the second element is always

a linked list, we call it a well-formed list. Interestingly, in Scheme, the second element
does not have to be a linked list. You can give something else instead, but cons always
takes exactly 2 arguments. These lists are called malformed list. The difference is a dot:
scm> (cons 2 3)

(2 . 3)

scm> (cons 2 (cons 3 nil))

(2 3)

scm> (cdr (cons 2 3))

3

scm> (cdr (cons 2 (cons 3 nil)))
(3)

In general, the rule for displaying a pair is as follows: use the dot to separate the car

and cdr fields of a pair, but if the dot is immediately followed by an open parenthesis,

then remove the dot and the parenthesis pair. Thus, (0 . (1 . 2)) becomes (0 1
2)

There are many useful operations and shorthands on lists. One of them is 1ist special
form 1ist takes zero or more arguments and returns a list of its arguments. Each argu-
ment is in the car field of each list element. It behaves the same as quoting a list, which
also creates the list.

scm> (list 1 2 3)

(1 2 3)

scm> '(1 2 3)

(1 2 3)

scm> (car '"(1 2 3))

1

scm> (equal? '"(1 2 3) (list 1 2 3))
#t

scm> "(1 . (2 3))

(1 2 3)

scm> ' (define (square x) (* xX X))

(define (square x) (* xX X))

CS 61A Spring 2017

DISCUSSION 8: SCHEME Page 9

1. Define a function that takes 2 lists and concatenates them together. Notice that simply
calling (cons a b) would not work because it will create a deep list. Instead, think
recursively!

(define (concat a b)

scm> (concat '"(1 2 3) '"(2 3 4))
(1 2 3 2 3 4)

2. Define replicate, which takes an element x and a non-negative integer n, and re-
turns a list with x repeated n times.
(define (replicate x n)

scm> (replicate 5 3)
(5 5 5)

CS 61A Spring 2017

DISCUSSION 8: SCHEME Page 10
3. A run-length encoding is a method of compressing a sequence of letters. The list (a

a ab aa a a)canbecompressedto ((a 3) (b 1) (a 4)), where the com-
pressed version of the sequence keeps track of how many letters appear consecutively.

Write a Scheme function that takes a compressed sequence and expands it into the
original sequence. Hint: try to use functions you defined earlier in this worksheet.
(define (uncompress s)

scm> (uncompress '((a 1) (b 2) (c 3)))
(a b bcc)

CS 61A Spring 2017

DISCUSSION 8: SCHEME Page 11
4. Define deep-apply, which takes a nested list and applies a given procedure to every
element. deep-apply should return a nested list with the same structure as the input
list, but with each element replaced by the result of applying the given procedure to
that element. Use the built-in 1ist ? procedure to detect whether a value is a list. The
procedure map has been defined for you.
(define (map fn lst)
(if (null? 1st)
nil
(cons (fn (car 1lst)) (map fn (cdr 1lst)))))
(define (deep-apply fn nested-1list)

scm> (deep-apply (lambda (x) (» x x)) '(1 2 3))

(1L 4 9)

scm> (deep-apply (lambda (x) (x x x)) "(1 ((4) 5) 9))
(1 ((1e6) 25) 81)

scm> (deep-apply (lambda (x) (*x x x)) 2)

4

CS 61A Spring 2017

DISCUSSION 8: SCHEME Page 12

Extra Questions

1. Fill in the following to complete an abstract tree data type:
(define (make—-tree root branches) (cons root branches))

(define (root tree))

(define (branches tree))

2. Using the abstract data type above, write a function that sums up the entries of a
tree, assuming that the entries are all numbers. Hint: you may want to use the map
function you defined above, as well as an additional helper function.

(define (tree—sum tree)

3. Using the abstract data type above, write a Scheme function that creates a new tree
where the entries are the product of the entries along the path to the root in the original
tree. Hint: you may want to write helper functions.

(define (path-product-tree t)

CS 61A Spring 2017

