
ORDERS OF GROWTH AND TREES 7
COMPUTER SCIENCE 61A

March 9, 2017

1 Orders of Growth

When we talk about the efficiency of a function, we are often interested in the following:
if the size of the input grows, how does the runtime of the function change? And what
do we mean by ”runtime”? Let’s look at the following examples first:
def square(n):

return n * n

def factorial(n):
if n == 0:

return 1
return n * factorial(n - 1)

• square(1) requires one primitive operation: * (multiplication). square(100)
also requires one. No matter what input n we pass into square, it always takes
one operation.

input function call return value number of operations
1 square(1) 1*1 1
2 square(2) 2*2 1
...

...
...

...
100 square(100) 100*100 1

...
...

...
...

n square(n) n*n 1



DISCUSSION 7: ORDERS OF GROWTH AND TREES Page 2
• factorial(1) requires one multiplication, but factorial(100) requires 100 mul-

tiplications. As we increase the input size of n, the runtime (number of operations)
increases linearly proportional to the input.

input function call return value number of operations
1 factorial(1) 1*1 1
2 factorial(2) 2*1*1 2
...

...
...

...
100 factorial(100) 100*99*. . . *1*1 100

...
...

...
...

n factorial(n) n*(n-1)*. . . *1*1 n

Here are some general guidelines for orders of growth:

• If the function is recursive or iterative, you can subdivide the problem as seen above:

– Count the number of recursive calls/iterations that will be made, given input n.

– Count how much time it takes to process the input per recursive call/iteration.

The answer is usually the product of the above two, but pay attention to control flow!

• If the function calls helper functions that are not constant-time, you need to take the
orders of growth of the helper functions into consideration.

• We can ignore constant factors. For example, Θ(1000000n) = Θ(n).

• We can also ignore lower-order terms. For example, Θ(n3 + n2 + 4n + 399) = Θ(n3).
This is because the n3 term dominates as n gets larger.

1.1 Kinds of Growth

Here are some common orders of growth, ranked from no growth to fastest growth:

• Θ(1) — constant time takes the same amount of time regardless of input size

• Θ(log n) — logarithmic time

• Θ(n) — linear time

• Θ(n2), Θ(n3), etc. — polynomial time

• Θ(2n) — exponential time (considered “intractable”; these are really, really horrible)

CS 61A Spring 2017



DISCUSSION 7: ORDERS OF GROWTH AND TREES Page 3
1.2 Questions

What is the order of growth for the following functions?
1. def sum_of_factorial(n):

if n == 0:
return 1

else:
return factorial(n) + sum_of_factorial(n - 1)

def fib_recursive(n):
if n == 0 or n == 1:

return n
else:

return fib_recursive(n - 1) + fib_recursive(n - 2)

2.3. def fib_iter(n):
prev, curr, i = 0, 1, 0
while i < n:

prev, curr = curr, prev + curr
i += 1

return prev

def mod_7(n):
if n % 7 == 0:

return 0
else:

return 1 + mod_7(n - 1)

CS 61A Spring 2017



DISCUSSION 7: ORDERS OF GROWTH AND TREES Page 4
4.5. def bonk(n):

total = 0
while n >= 2:

total += n
n = n / 2

return total

6. def bar(n):
if n % 2 == 1:

return n + 1
return n

def foo(n):
if n < 1:

return 2
if n % 2 == 0:

return foo(n - 1) + foo(n - 2)
else:

return 1 + foo(n - 2)

What is the order of growth of foo(bar(n))?

CS 61A Spring 2017



DISCUSSION 7: ORDERS OF GROWTH AND TREES Page 5

2 Object-Oriented Trees

Trees are also data abstractions that can have multiple implementations. Previously, we
implemented the tree abstraction using Python lists. Let’s look at another implementation
using objects instead. With this implementation, we can easily specify specialized tree
types, such as binary trees , using inheritance.
class Tree:

def __init__(self, label, branches=[]):
for b in branches:

assert isinstance(b, Tree)
self.label = label
self.branches = branches

def is_leaf(self):
return not self.branches

Notice that with this implementation we can mutate the label of a tree by reassigning
tree.label. In the previous implementation using lists, this was not possible, because
the abstraction barrier prevented us from seeing how the tree was implemented.

2.1 Questions

1. Define a function make even which takes in a tree t whose labels are integers, and
mutates the tree such that all the odd integers are increased by 1 and all the even
integers remain the same.
def make_even(t):

"""
>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4), Tree(5)])
>>> make_even(t)
>>> t.label
2
>>> t.branches[0].branches[0].label
4
"""

CS 61A Spring 2017



DISCUSSION 7: ORDERS OF GROWTH AND TREES Page 6
2. Create and return a new tree with the same shape as t, but where all elements are n.
def fill_tree(t, n):

"""
>>> t0 = Tree(0, [Tree(1), Tree(2)])
>>> t1 = fill_tree(t0, 5)
>>> t1
Tree(5, [Tree(5), Tree(5)])
"""

3. Write a function that combines the labels of two trees t1 and t2 together with the
combiner function. Assume that t1 and t2 have identical structure. This function
should return a new tree.
def combine_tree(t1, t2, combiner):

"""
>>> a = Tree(1, [Tree(2, [Tree(3)])])
>>> b = Tree(4, [Tree(5, [Tree(6)])])
>>> combined = combine_tree(a, b, mul)
>>> combined.label
4
>>> combined.branches[0].label
10
"""

CS 61A Spring 2017



DISCUSSION 7: ORDERS OF GROWTH AND TREES Page 7
4. Assuming that every label in t is a number, let’s define average(t), which returns

the average of all the labels in t.
def average(t):

"""
Returns the average value of all the labels in t.
>>> t0 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])
>>> average(t0)
1.5
>>> t1 = Tree(8, [t0, Tree(4)])
>>> average(t1)
3.0
"""

CS 61A Spring 2017



DISCUSSION 7: ORDERS OF GROWTH AND TREES Page 8
2.2 Extra Questions

1. Implement the alt tree map function that, given a function and a Tree, applies the
function to all of the data at every other level of the tree, starting at the root.
def alt_tree_map(t, map_fn):

"""
>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4)])
>>> negate = lambda x: -x
>>> alt_tree_map(t, negate)
Tree(-1, [Tree(2, [Tree(-3)]), Tree(4)])
"""

2. How would we modify the Tree class so that each node remembers its parent? Write
out the new Tree class with the necessary modifications.

Now write a method first to last for the Tree class that swaps a tree’s own first
child with the last child of other (another instance of the Tree class). Don’t forget to
make sure the parents are still correct after the swap!
def first_to_last(self, other):

CS 61A Spring 2017


