
ITERATORS AND GENERATORS 6
COMPUTER SCIENCE 61A

March 2, 2017

1 Iterators

An iterator is an object that tracks the position in a sequence of values in order to provide
sequential access. It returns elements one at a time and is only good for one pass through
the sequence. The following is an example of a class that implements Python’s iterator
interface using two special methods __next__ and __iter__. This iterator calculates
all of the natural numbers one-by-one, starting from zero:

class Naturals():
def __init__(self):

self.current = 0

def __next__(self):
result = self.current
self.current += 1
return result

def __iter__(self):
return self

1.1 __next__

The __next__ method checks if it has any values left in the sequence; if it does, it com-
putes the next element. To return the next value in the sequence, the __next__ method
keeps track of its current position in the sequence. If there are no more values left to



DISCUSSION 6: ITERATORS AND GENERATORS Page 2
compute, it must raise an exception called StopIteration. This signals the end of the
sequence.

Note: the __next__method defined in the Naturals class does not raise StopIteration
because there is no “last natural number”.

1.2 __iter__

The __iter__ method returns an iterator object. If a class implements both a __next__
method and an __iter__ method, its __iter__ method can simply return self as the
class itself is an iterator. In fact, Python specifies that an iterator’s __iter__ method
should return self.

1.3 Implementation

When defining an iterator, you should always keep track of current position in the se-
quence. In the Naturals class, we use self.current to save the position.

Iterator objects maintain state. Each successive call to __next__ will return the next
element in the sequence. Since this element may be different from the previous one,
__next__ is considered non-pure.

Python has built-in functions called next and iter that call __next__ and __iter__
respectively.

For example, this is how we could use the Naturals iterator:
>>> nats = Naturals()
>>> next(nats)
0
>>> next(nats)
1
>>> next(nats)
2

1.4 Iterables

An iterable object is any container that can be processed sequentially. Examples of it-
erables are lists, tuples, strings, and dictionaries. The iterable class must implement
an __iter__ method, which returns an iterator. Note that since all iterators have an
__iter__ method, they are all iterable.

In general, a sequence’s __iter__ method will return a new iterator every time it is
called. This is because an iterator cannot be reset. Returning a new iterator allows us to
iterate through the same sequence multiple times.

CS 61A Spring 2017



DISCUSSION 6: ITERATORS AND GENERATORS Page 3
1.5 Questions

1. Define an iterator whose ith element is the result of combining the ith elements of two
input iterators using some binary operator, also given as input. The resulting iterator
should have a size equal to the size of the shorter of its two input iterators.

>>> from operator import add
>>> evens = IteratorCombiner(Naturals(), Naturals(), add)
>>> next(evens)
0
>>> next(evens)
2
>>> next(evens)
4

class IteratorCombiner(object):
def __init__(self, iterator1, iterator2, combiner):

def __next__(self):

def __iter__(self):

2. What is the result of executing this sequence of commands?
>>> nats = Naturals()
>>> doubled_nats = IteratorCombiner(nats, nats, add)
>>> next(doubled_nats)

>>> next(doubled_nats)

CS 61A Spring 2017



DISCUSSION 6: ITERATORS AND GENERATORS Page 4
3. Create an iterator that generates the sequence of Fibonacci numbers.
class FibIterator(object):

def __init__(self):

def __next__(self):

def __iter__(self):
return self

2 Generators

A generator function is a special kind of Python function that uses a yield statement
instead of a return statement to report values. When a generator function is called, it returns
an iterator. The following is a function that returns an iterator for the natural numbers:
def gen_naturals():

current = 0
while True:

yield current
current += 1

Calling generate_naturals() will return a generator object, which you can use to
retrieve values.
>>> gen = gen_naturals()
>>> gen
<generator object gen at ...>
>>> next(gen)
0
>>> next(gen)
1

CS 61A Spring 2017



DISCUSSION 6: ITERATORS AND GENERATORS Page 5
2.1 yield

The yield statement is similar to a return statement. However, while a return state-
ment closes the current frame after the function exits, a yield statement causes the frame
to be saved until the next time next is called, which allows the generator to automatically
keep track of the iteration state.

Once next is called again, execution resumes where it last stopped and continues until
the next yield statement or the end of the function. A generator function can have
multiple yield statements.

Including a yield statement in a function automatically tells Python that this function
will create a generator. When we call the function, it returns a generator object instead of
executing the the body. When the generator’s nextmethod is called, the body is executed
until the next yield statement is executed.

2.2 iter

We can make our own classes iterable using the __iter__ method, which returns an it-
erator object. Because generators are technically iterators, you can implement __iter__
methods using them. For example:
class Naturals():

def __iter__(self):
current = 0
while True:

yield current
current += 1

Naturals’s __iter__method now returns a generator object. The behavior of Naturals
is almost the same as before:
>>> nats = Naturals()
>>> nats_iterator1 = iter(nats)
>>> next(nats_iterator1)
0
>>> next(nats_iterator1)
1
>>> nats_iterator2 = iter(nats)
>>> next(nats_iterator2)
0

In this example, we can iterate over the same object more than once by calling iter multi-
ple times. Note that nats is an iterable object and the nats_iterator’s are generators.

CS 61A Spring 2017



DISCUSSION 6: ITERATORS AND GENERATORS Page 6
2.3 Questions

1. Define a generator that yields the sequence of perfect squares. The sequence of perfect
squares looks like: 1, 4, 9, 16 . . .
def perfect_squares():

2. To make the Link class iterable, implement the __iter__ method using a generator.
class Link:

empty = ()

def __init__(self, first, rest=empty):
self.first = first
self.rest = rest

def __iter__(self):

3. Write a generator function that returns all subsets of the positive integers from 1 to
n. Each call to this generator’s next method will return a list of subsets of the set
[1, 2, ..., n], where n is the number of times next was previously called.
def generate_subsets():

"""
>>> subsets = generate_subsets()
>>> for _ in range(3):
... print(next(subsets))
...
[[]]
[[], [1]]
[[], [1], [2], [1, 2]]
"""

CS 61A Spring 2017



DISCUSSION 6: ITERATORS AND GENERATORS Page 7

3 Nonlocal Practice

1. The bathtub below simulates an epic battle between Finn and Kylo Ren over a popu-
lace of rubber duckies. Fill in the body of ducky so that all doctests pass.
def bathtub(n):

"""
>>> annihilator = bathtub(500) # the force awakens...
>>> kylo_ren = annihilator(10)
>>> kylo_ren()
490 rubber duckies left
>>> rey = annihilator(-20)
>>> rey()
510 rubber duckies left
>>> kylo_ren()
500 rubber duckies left
"""
def ducky_annihilator(rate):

def ducky():

return ducky
return ducky_annihilator

CS 61A Spring 2017



DISCUSSION 6: ITERATORS AND GENERATORS Page 8
2. (Fall 2013) Draw the environment diagram that results from the following code:

def miley(ray):
def cy():

def rus(billy):
nonlocal cy
cy = lambda: billy + ray
return [1, billy]

if len(rus(2)) == 1:
return [3, 4]

else:
return [cy(), 5]

return cy()[1]

billy = 6
miley(7)

CS 61A Spring 2017


