
MUTATION AND OOP 5
COMPUTER SCIENCE 61A

February 23, 2017

1 List Mutation

Let’s imagine you order a mushroom and cheese pizza from Domino’s, and that they
represent your order as a list:
>>> pizza1 = ['cheese', 'mushrooms']

A couple minutes later, you realize that you really want onions on the pizza. Based on
what we know so far, Domino’s would have to build an entirely new list to add onions:
>>> pizza2 = pizza1 + ['onions'] # creates a new python list
>>> pizza2
['cheese', mushrooms', 'onions']
>>> pizza1 # the original list is unmodified
['cheese', 'mushrooms']

But this is silly, considering that all Domino’s had to do was add onions on top of pizza1
instead of making an entirely new pizza2.

Python actually allows you to mutate some objects, includings lists and dictionaries. Mu-
tability means that the object’s contents can be changed. So instead of building a new
pizza2, we can use pizza1.append(’onions’) to mutate pizza1.
>>> pizza1.append('onions')
>>> pizza1
['cheese', 'mushrooms', 'onions']

Although lists and dictionaries are mutable, many other objects, such as numeric types,
tuples, and strings, are immutable, meaning they cannot be changed once they are created.

DISCUSSION 5: MUTATION AND OOP Page 2
We can use the familiar indexing operator to mutate a single element in a list. For instance
lst[4]=’hello’ would change the fifth element in lst to be the string ’hello’. In
addition to the indexing operator, lists have many mutating methods. List methods are
functions that are bound to a specific list. Some useful list methods are listed here:

1. append(el) adds el to the end of the list

2. insert(i, el) insert el at index i (does not replace element but adds a new one)

3. remove(el) removes the first occurrence of el in list, otherwise errors

4. pop(i) removes and returns the element at index i

List methods are called via dot notation, as in:
>>> sharks = ['joe thornton', 'patrick marleau']
>>> sharks.append('logan couture')
>>> sharks.pop(1)
'patrick marleau'
>>> sharks
['joe thornton', 'logan couture']

1.1 Questions

1. Consider the following definitions and assignments and determine what Python would
output for each of the calls below if they were evaluated in order. It may be helpful to
draw the box and pointers diagrams to the right in order to keep track of the state.
>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
>>> lst1 == lst2 #compares each value

>>> lst1 is lst2 #compares references

>>> lst2 = lst1
>>> lst2 is lst1

>>> lst1.append(4)
>>> lst1

>>> lst2

>>> lst2[1] = 42

CS 61A Spring 2017

DISCUSSION 5: MUTATION AND OOP Page 3
>>> lst2

>>> lst1 = lst1 + [5]
>>> lst1 == lst2

>>> lst1

>>> lst2

>>> lst2 is lst1

2. Write a function that removes all instances of an element from a list.
def remove_all(el, lst):

"""
>>> x = [3, 1, 2, 1, 5, 1, 1, 7]
>>> remove_all(1, x)
>>> x
[3, 2, 5, 7]
"""

3. Write a function square elements which takes a lst and replaces each element
with the square of that element. Mutate lst rather than returning a new list.
def square_elements(lst):

"""
>>> lst = [1, 2, 3]
>>> square_elements(lst)
>>> lst
[1, 4, 9]
"""

CS 61A Spring 2017

DISCUSSION 5: MUTATION AND OOP Page 4

2 Object Oriented Programming

In a previous lecture, you were introduced to the programming paradigm known as
Object-Oriented Programming (OOP). OOP allows us to treat data as objects - like we
do in real life.

For example, consider the class CS61A_Student. Each of you as individuals are an in-
stance of this class. So, a student Mitaswould be an instance of the class CS61A_Student.

Details that all CS61A students have, such as name, year, and major, are called instance
attributes. Every student has these attributes, but their values differ from student to
student. An attribute that is shared among all instances of CS61A_Student is known as
a class attribute. An example would be the instructors attribute; the instructor for
61A, Professor DeNero, is the same for every student in CS61A.

All students are able to do homework, attend lecture, and go to office hours. When func-
tions belong to a specific object, they are said to be methods. In this case, these actions
would be bound methods of CS61A_Student objects.

Here is a recap of what we discussed above:

• class: a template for creating objects

• instance: a single object created from a class

• instance attribute: a property of an object, specific to an instance

• class attribute: a property of an object, shared by all instances of the same class

• method: an action (function) that all instances of a class may perform

CS 61A Spring 2017

DISCUSSION 5: MUTATION AND OOP Page 5
2.1 Questions

1. Below we have defined the classes Instructor, Student, and TeachingAssistant,
implementing some of what was described above. Remember that we pass the self
argument implicitly to instance methods when using dot-notation.
class Instructor:

degree = "PhD (Magic)" # this is a class attribute
def __init__(self, name):

self.name = name # this is an instance attribute

def lecture(self, topic):
print("Today we're learning about " + topic)

dumbledore = Instructor("Dumbledore")
class Student:

instructor = dumbledore

def __init__(self, name, ta):
self.name = name
self.understanding = 0
ta.add_student(self)

def attend_lecture(self, topic):
Student.instructor.lecture(topic)
print(Student.instructor.name + " is awesome!")
self.understanding += 1

def visit_office_hours(self, staff):
staff.assist(self)
print("Thanks, " + staff.name)

class TeachingAssistant:
def __init__(self, name):

self.name = name
self.students = {}

def add_student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

CS 61A Spring 2017

DISCUSSION 5: MUTATION AND OOP Page 6
What will the following lines output?

>>> snape = TeachingAssistant("Snape")
>>> harry = Student("Harry", snape)
>>> harry.attend_lecture("potions")

>>> hermione = Student("Hermione", snape)
>>> hermione.attend_lecture("herbology")

>>> hermione.visit_office_hours(TeachingAssistant("Hagrid"))

>>> harry.understanding

>>> snape.students["Hermione"].understanding

>>> Student.instructor = Instructor("Umbridge")
>>> Student.attend_lecture(harry, "transfiguration")
Equivalent to harry.attend_lecture("transfiguration")

CS 61A Spring 2017

DISCUSSION 5: MUTATION AND OOP Page 7

3 Inheritance

Let’s explore another powerful object-oriented programming tool: inheritance. Suppose
we want to write Dog and Cat classes. Here’s our first attempt:
class Dog(object):

def __init__(self, name, owner, color):
self.name = name
self.owner = owner
self.color = color

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says woof!")

class Cat(object):
def __init__(self, name, owner, lives=9):

self.name = name
self.owner = owner
self.lives = lives

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says meow!")

Notice that the only difference between both the Dog and Cat classes are the talkmethod
as well as the color and lives attributes. That’s a lot of repeated code!

This is where inheritance comes in. In Python, a class can inherit the instance variables
and methods of a another class without having to type them all out again. For example:
class Foo(object):

This is the base class

class Bar(Foo):
This is the subclass

Bar inherits from Foo. We call Foo the base class (the class that is being inherited) and
Bar the subclass (the class that does the inheriting).

Notice that Foo also inherits from the object class. In Python, object is the top-level
base class that provides basic functionality; everything inherits from it, even when you
don’t specify a class to inherit from. One common use of inheritance is to represent a
hierarchical relationship between two or more classes where one class is a more specific
version of the other class. For example, a dog is a pet.

CS 61A Spring 2017

DISCUSSION 5: MUTATION AND OOP Page 8
class Pet(object):

def __init__(self, name, owner):
self.is_alive = True # It's alive!!!
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def __init__(self, name, owner, color):

Pet.__init__(self, name, owner)
self.color = color

def talk(self):
print(self.name + ' says woof!')

By making Dog a subclass of Pet, we did not have to redefine self.name, self.owner,
or eat. However, since we want Dog to talk differently, we did redefine, or override,
the talk method.

The line Pet. init (self, name, owner) in the Dog class is necessary for inherit-
ing the instance attributes and methods from Pet. Notice that when we call Pet. init ,
we need to pass in self as a regular argument (that is, inside the parentheses, rather than
by dot-notation) since Pet is a class, not an instance.

CS 61A Spring 2017

DISCUSSION 5: MUTATION AND OOP Page 9
3.1 Questions

1. Implement the Cat class by inheriting from the Pet class. Make sure to use superclass
methods wherever possible. In addition, add a lose life method to the Cat class.
class Cat(Pet):

def __init__(self, name, owner, lives=9):

def talk(self):
"""A cat says meow! when asked to talk."""

def lose_life(self):
"""A cat can only lose a life if they have at
least one life. When lives reaches zero, 'is_alive'
becomes False.
"""

2. More cats! Fill in the methods for NoisyCat, which is just like a normal Cat. How-
ever, NoisyCat talks a lot, printing twice whatever a Cat says.
class NoisyCat(Cat):

"""A Cat that repeats things twice."""
def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?

def talk(self):
"""Repeat what a Cat says twice."""

CS 61A Spring 2017

DISCUSSION 5: MUTATION AND OOP Page 10
3. What would Python print? (Summer 2013 Final)
class A:

def f(self):
return 2

def g(self, obj, x):
if x == 0:

return A.f(obj)
return obj.f() + self.g(self, x - 1)

class B(A):
def f(self):

return 4

>>> x, y = A(), B()
>>> x.f()

>>> B.f()

>>> x.g(x, 1)

>>> y.g(x, 2)

4. Implement the Yolo class so that the following interpreter session works as expected.
(Summer 2013 Final)
>>> x = Yolo(1)
>>> x.g(3)
4
>>> x.g(5)
6
>>> x.motto = 5
>>> x.g(5)
10

CS 61A Spring 2017

