
MIDTERM REVIEW 4
COMPUTER SCIENCE 61A

February 16, 2017

1 Midterm Review

1. Implement the functions max product, which takes in a list and returns the max-
imum product that can be formed using nonconsecutive elements of the list. The
input list will contain only numbers greater than or equal to 1.
def max_product(lst):

"""Return the maximum product that can be formed using lst
without using any consecutive numbers
>>> max_product([10,3,1,9,2]) # 10 * 9
90
>>> max_product([5,10,5,10,5]) # 5 * 5 * 5
125
>>> max_product([])
1
"""



DISCUSSION 4: MIDTERM REVIEW Page 2
2. (Fall 2012) Draw the environment diagram for the following code:
def horse(mask):

horse = mask
def mask(horse):

return horse
return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

CS 61A Spring 2017



DISCUSSION 4: MIDTERM REVIEW Page 3
3. Draw the environment diagram for the following code:
doug = "ni"
def cat(dog):

def rug(rat):
doug = lambda doug: rat(doug)
return doug

return rug(dog)("ck")

cat(lambda rat: doug + rat)

CS 61A Spring 2017



DISCUSSION 4: MIDTERM REVIEW Page 4
4. Define a function foo that takes in a list lst and returns a new list that keeps only

the even-indexed elements of lst and multiplies each of those elements by the corre-
sponding index.
def foo(lst):

"""
>>> x = [1, 2, 3, 4, 5, 6]
>>> foo(x)
[0, 6, 20]
"""

return [_________________________________________________]

5. Consider an insect in an M by N grid. The insect starts at the bottom left corner, (0,
0), and wants to end up at the top right corner (M-1, N-1). The insect is only
capable of moving right or up. Write a function paths that takes a grid length and
width and returns the number of different paths the insect can take from the start
to the goal. (There is a closed-form solution to this problem, but try to answer it
procedurally using recursion.)

def paths(m, n):
"""
>>> paths(2, 2)
2
>>> paths(117, 1)
1
"""

CS 61A Spring 2017



DISCUSSION 4: MIDTERM REVIEW Page 5
6. An expression tree is a tree that contains a function for each non-leaf label, which

can be either ’+’ or ’*’. All leaves are numbers. Implement eval tree, which
evaluates an expression tree to its value. You may want to use the functions sum and
prod, which take a list of numbers and compute the sum and product respectively.
def eval_tree(tree):

"""Evaluates an expression tree with functions as root
>>> eval_tree(tree(1))
1
>>> expr = tree('*', [tree(2), tree(3)])
>>> eval_tree(expr)
6
>>> eval_tree(tree('+', [expr, tree(4), tree(5)]))
15
"""

CS 61A Spring 2017



DISCUSSION 4: MIDTERM REVIEW Page 6
7. (Spring 2015) Implement the memory function, which takes a number x and a single-

argument function f. It returns a function with a peculiar behavior that you must
discover from the doctests. You may only use names and call expressions in your
solution. You may not write numbers or use features of Python not yet covered in the
course.
square = lambda x: x * x
double = lambda x: 2 * x
def memory(x, f):

"""Return a higher-order function that prints its
memories.
>>> f = memory(3, lambda x: x)
>>> f = f(square)
3
>>> f = f(double)
9
>>> f = f(print)
6
>>> f = f(square)
3
None
"""
def g(h):

print(________________________________________)

return _______________________________________

return g

CS 61A Spring 2017


