
SEQUENCES AND TREES 3
COMPUTER SCIENCE 61A

February 9, 2017

1 Sequences and Lists

A sequence is an ordered collection of values. It has two fundamental properties: length
and element selection. In this discussion, we’ll explore one of Python’s data types, the
list, which implements this abstraction.

In Python, we can have lists of whatever values we want, be it numbers, strings, functions,
or even other lists! Furthermore, the types of the list’s contents need not be the same. In
other words, the list need not be homogenous.

Lists can be created using square braces. Their elements can be accessed (or indexed) with
square braces. Lists are zero-indexed: to access the first element, we must index at 0; to
access the ith element, we must index at i− 1.

We can also index with negative numbers. These begin indexing at the end of the list,
so the index −1 is equivalent to the index len(list) - 1 and index −2 is the same as
len(list) - 2.

Let’s try out some indexing:
>>> fantasy_team = ['aaron rodgers', 'desean jackson']
>>> print(fantasy_team)
['aaron rodgers', 'desean jackson']
>>> fantasy_team[0]
'aaron rodgers'
>>> fantasy_team[len(fantasy_team) - 1]
'desean jackson'
>>> fantasy_team[-1]
'desean jackson'

DISCUSSION 3: SEQUENCES AND TREES Page 2
If we have two lists, we can use the + operator to create a new list with the values of the
original two lists, concatenated together.
>>> fish_names = ['Dory', 'Flounder']
>>> rabbit_names = ['Bugs Bunny', 'Officer Hopps']
>>> animal_names = fish_names + rabbit_names
>>> animal_names
['Dory', 'Flounder', 'Bugs Bunny', 'Officer Hopps']

Sequences also have a notion of length, the number of items stored in the sequence. In
Python,we can check how long a sequence is with the len built-in function.

We can also check if an item exists within a list with the in statement.
>>> poke_team = ['Meowth', 'Mewtwo']
>>> len(poke_team)
2
>>> 'Meowth' in poke_team
True
>>> 'Pikachu' in poke_team
False

1. What would Python print?
>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])

>>> len(a)

>>> 2 in a

>>> 4 in a

>>> a[3][0]

CS 61A Spring 2017

DISCUSSION 3: SEQUENCES AND TREES Page 3
1.1 Slicing

If we want to access more than one element of a list at a time, we can use a slice. Slicing
a sequence is very similar to indexing. We specify a starting index and an ending index,
separated by a colon. Python creates a new list with the elements from the starting index
up to (but not including) the ending index.

We can also specify a step size, which tells Python how to collect values for us. For
example, if we set step size to 2, the returned list will include every other value, from the
starting index until the ending index. A negative step size indicates that we are stepping
backwards through a list when collecting values.

If the step size is left out, the default step size is 1. If either the start or end indices are left
out, the slice starts at the beginning and ends at the end of the list. When the step size is
negative, the slice starts at the end and ends at the beginning of the list.

Thus, lst[:] creates a list that is identical to lst (a copy of lst). lst[::-1] creates a
list that has the same elements of lst, but reversed. Those rules still apply if more than
just the step size is specified e.g. lst[3::-1].
>>> directors = ['jenkins', 'spielberg', 'bigelow', 'kubrick']
>>> directors[:2]
['jenkins', 'spielberg']
>>> directors[1:3]
['spielberg', 'bigelow']
>>> directors[1:]
['spielberg', 'bigelow', 'kubrick']
>>> directors[0:4:2]
['jenkins', 'bigelow']
>>> directors[::-1]
['kubrick', 'bigelow', 'spielberg', 'jenkins']

1. What would Python print?
>>> a = [3, 1, 4, 2, 5, 3]
>>> a[1::2]

>>> a[:]

>>> a[4:2]

>>> a[1:-2]

>>> a[::-1]

CS 61A Spring 2017

DISCUSSION 3: SEQUENCES AND TREES Page 4

2 List Comprehensions

A list comprehension is a compact way to create a list whose elements are the results of
applying a fixed expression to elements in another sequence.

[<map exp> for <name> in <iter exp> if <filter exp>]

Let’s break down an example:

[x * x - 3 for x in [1, 2, 3, 4, 5] if x % 2 == 1]

In this list comprehension, we are creating a new list after performing a series of opera-
tions to our initial sequence [1, 2, 3, 4, 5]. We only keep the elements that satisfy
the filter expression x % 2 == 1 (1, 3, and 5). For each retained element, we apply the
map expression x*x - 3 before adding it to the new list that we are creating, resulting
in the output [-2, 6, 22].

Note: The if clause in a list comprehension is optional.

1. What would Python print?
>>> [i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]

>>> [i * i - i for i in [5, -1, 3, -1, 3] if i > 2]

>>> [[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]

CS 61A Spring 2017

DISCUSSION 3: SEQUENCES AND TREES Page 5

3 Trees

In computer science, trees are recursive data structures that are widely used in various
settings. This is a diagram of a simple tree.

7

1

3

2

−4 0

8

6

11

16

17

19

20

Notice that the tree branches downward. In computer science, the root of a tree starts at
the top, and the leaves are at the bottom.

Some terminology regarding trees:

• Parent node: A node that has branches. Parent nodes can have multiple branches.

• Branch node: A node that has a parent. A branch node can only belong to one parent.

• Root: The top node of the tree. In our example, the node that contains 7 is the root.

• Label: The value at a node. In our example, all of the integers are labels.

• Leaf: A node that has no branches. In our example, the nodes that contain −4, 0, 6,
17, and 20 are leaves.

• Subtree: Notice that each branch of a parent is itself the root of a smaller tree. In
our example, the node containing 1 is the root of another tree. This is why trees are
recursive data structures: trees are made up of subtrees, which are trees themselves.

• Depth: How far away a node is from the root. In other words, the number of edges
between the root of the tree to the node. In the diagram, the node containing 19 has
depth 1; the node containing 3 has depth 2. Since there are no edges between the root
of the tree and itself, the depth of the root is 0.

• Height: The depth of the lowest leaf. In the diagram, the nodes containing −4, 0, 6,
and 17 are all the “lowest leaves,” and they have depth 4. Thus, the entire tree has
height 4.

In computer science, there are many different types of trees. Some vary in the number of
branches each node has; others vary in the structure of the tree.

CS 61A Spring 2017

DISCUSSION 3: SEQUENCES AND TREES Page 6
A tree has both a label for the root node and a sequence of children, which are also trees.
In our implementation, we represent the branches as lists of subtrees. Since a tree is an
abstract data type, our choice to use lists is simply an implementation detail.

• The arguments to the constructor, tree, as a label for the root node and a list of
branches.

• The selectors are label and branches.

Constructor
def tree(label, branches=[]):

return [label] + list(branches)

Selectors
def label(tree):

return tree[0]

def branches(tree):
return tree[1:]

Note that branches returns a list of subtrees and not a tree directly. Although trees are
represented as lists in this implementation, it is important to recognize when working
with a tree or a list of trees.

We have also provided a convenience function, is leaf:

def is_leaf(tree):
return not branches(tree)

It’s simple to construct a tree. Let’s try to create the following tree:

1

3

4 5 6

2

t = tree(1,
[tree(3,

[tree(4),
tree(5),
tree(6)]),

tree(2)])

CS 61A Spring 2017

DISCUSSION 3: SEQUENCES AND TREES Page 7
3.1 Questions

1. Define a function square tree(t) that squares every label in the tree t. It should
return a new tree. You can assume that every item is a number.
def square_tree(t):

"""Return a tree with the square of every element in t"""

2. Define a function height(t) that returns the height of a tree. Recall that the height
of a tree is the length of the longest path from the root to a leaf.
def height(t):

"""Return the height of a tree"""

3. Define a function tree max(t) that returns the largest number in a tree.
def tree_max(t):

"""Return the max of a tree."""

CS 61A Spring 2017

DISCUSSION 3: SEQUENCES AND TREES Page 8
3.2 Extra Questions!

1. Define the procedure find path(tree, x) that, given a tree tree and a value x,
returns a list containing the nodes along the path required to get from the root of tree
to a node x. If x is not present in tree, return None. Assume that the entries of tree
are unique.

For the following tree, find path(t, 5) should return [2, 7, 6, 5]

2

7

3 6

5 11

15

def find_path(tree, x):
"""
>>> find_path(t, 5)
[2, 7, 6, 5]
>>> find_path(t, 10) # returns None
"""

2. Implement a prune function which takes in a tree t and a depth k, and should return
a new tree that is a copy of only the first k levels of t.label For example, if t is the tree
shown in the previous question, then prune(t, 2) should return the tree

2

7

3 6

15

def prune(t, k):

CS 61A Spring 2017

DISCUSSION 3: SEQUENCES AND TREES Page 9
3. We can represent the hailstone sequence as a tree in the figure below, showing the

route different numbers take to reach 1. Remember that a hailstone sequence starts
with a number n, continuing to n/2 if n is even or 3n + 1 if n is odd, ending with
1. Write a function hailstone tree(n, h) which generates a tree of height h,
containing hailstone numbers that will reach n.

Hint: A node of a hailstone tree will always have at least one, and at most two
branches (which are also hailstone trees). Under what conditions do you add the
second branch?

1 2 4 8 16
5 10

3
20

32 64
21

128

def hailstone_tree(n, h):
"""Generates a tree of hailstone numbers that will

reach N, with height H.
>>> hailstone_tree(1, 0)
[1]
>>> hailstone_tree(1, 4)
[1, [2, [4, [8, [16]]]]]
>>> hailstone_tree(8, 3)
[8, [16, [32, [64]], [5, [10]]]]
"""

CS 61A Spring 2017

