
ENVIRONMENT DIAGRAMS AND RECURSION 2
COMPUTER SCIENCE 61A

February 2, 2017

1 More Environment Diagrams

Recall that an environment diagram keeps track of all the variables that have been de-
fined and the values they are bound to. However, values are not necessarily only inte-
gers and strings. Environment diagrams can model more complex programs that utilize
higher order functions.

def add_num(x):
return lambda y: x + y

add_two = add_num(2)
add_two(3)

Lambdas are represented similiarly to functions in environment diagrams, but since they
lack instrinsic names, the lambda symbol (λ) is used instead.



DISCUSSION 2: ENVIRONMENT DIAGRAMS AND RECURSION Page 2
The parent of any function (including lambdas) is always the frame in which the function
is defined. It is useful to include the parent in environment diagrams in order to find
variables that are not defined in the current frame. In the previous example, when we
call add two (which is really the lambda function), we need to know what x is in order
to compute x + y. Since x is not in the frame f2, we look at the frame’s parent, which is
f1. There, we find x is bound to 2.

As illustrated above, higher order functions that return a function have their return value
represented with a pointer to the function object.

1. Draw the environment diagram that results from executing the code below.
from operator import add

six = 1

def ty(one, a):
fall = one(a, six)
return fall

six = ty(add, 6)
fall = ty(add, 6)

CS 61A Spring 2017



DISCUSSION 2: ENVIRONMENT DIAGRAMS AND RECURSION Page 3
2. Draw the environment diagram for the following code:
def curry2(h):

def f(x):
def g(y):

return h(x, y)
return g

return f

make_adder = curry2(lambda x, y: x + y)
add_three = make_adder(3)
five = add_three(2)

CS 61A Spring 2017



DISCUSSION 2: ENVIRONMENT DIAGRAMS AND RECURSION Page 4
3. Draw the environment diagram that results from running the following code:

n = 7

def f(x):
n = 8
return x + 1

def g(x):
n = 9
def h():

return x + 1
return h

def f(f, x):
return f(x + n)

f = f(g, n)
g = (lambda y: y())(f)

CS 61A Spring 2017



DISCUSSION 2: ENVIRONMENT DIAGRAMS AND RECURSION Page 5
4. The following question is extremely difficult. Something like this would not appear on the

exam. Nonetheless, it’s a fun problem to try.

Draw the environment diagram for the following code: (Note that using the + op-
erator with two strings results in the second string being appended to the first. For
example "C" + "S" concatenates the two strings into one string "CS")
y = "y"
h = y
def y(y):

h = "h"
if y == h:

return y + "i"
y = lambda y: y(h)
return lambda h: y(h)

y = y(y)(y)

CS 61A Spring 2017



DISCUSSION 2: ENVIRONMENT DIAGRAMS AND RECURSION Page 6

2 Recursion

A recursive function is a function that calls itself. Here’s a recursive function:
def factorial(n):

if n == 0 or n == 1:
return 1

else:
return n * factorial(n-1)

Although we haven’t finished defining factorial, we are still able to call it since the
function body is not evaluated until the function is called. We do have one base case:
when n is 0 or 1. Now we can compute factorial(2) in terms of factorial(1),
and factorial(3) in terms of factorial(2), and factorial(4) – well, you get
the idea.

There are three common steps in a recursive definition:

1. Figure out your base case: What is the simplest argument we could possibly get? For
example, factorial(0) is 1 by definition.

2. Make a recursive call with a simpler argument: Simplify your problem, and assume that
a recursive call for this new problem will simply work. This is called the “leap of
faith”. For factorial, we reduce the problem by calling factorial(n-1).

3. Use your recursive call to solve the full problem: Remember that we are assuming the
recursive call works. With the result of the recursive call, how can you solve the
original problem you were asked? For factorial, we just multiply (n− 1)! by n.

2.1 Questions

1. Write a function multiply(m, n) that multiplies two numbers m and n. Assume m
and n are positive integers. Use recursion, not mul or *!

Hint: 5*3 = 5 + 5*2 = 5 + 5 + 5*1.

For the base case, what is the simplest possible input for multiply?

For the recursive case, what does calling multiply(m - 1, n) do? What does
calling multiply(m, n - 1) do? Do we prefer one over the other?

CS 61A Spring 2017



DISCUSSION 2: ENVIRONMENT DIAGRAMS AND RECURSION Page 7

def multiply(m, n):
"""
>>> multiply(5, 3)
15
"""

2. Create a recursive countdown function that takes in an integer n and prints out a
countdown from n to 1. The function is defined on the next page.

First, think about a base case for the countdown function. What is the simplest input
the problem could be given?

After you’ve thought of a base case, think about a recursive call with a smaller argu-
ment that approches the base case. What happens if you call countdown(n - 1)?

Then, put the base case and the recursive call together, and think about where a print
statement would be needed.
def countdown(n):

"""
>>> countdown(3)
3
2
1
"""

CS 61A Spring 2017



DISCUSSION 2: ENVIRONMENT DIAGRAMS AND RECURSION Page 8
3. Is there an easy way to change countdown to count up instead?

4. Write a recursive function that sums the digits of a number n. Assume n is positive.
You might find the operators // and % useful.
def sum_digits(n):

"""
>>> sum_digits(7)
7
>>> sum_digits(30)
3
>>> sum_digits(228)
12
"""

CS 61A Spring 2017



DISCUSSION 2: ENVIRONMENT DIAGRAMS AND RECURSION Page 9

3 Tree Recursion

Consider a function that requires more than one recursive call. A simple example is the
previous recursive fibonacci function:
def fib(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fib(n - 1) + fib(n - 2)

This type of recursion is called tree recursion, because it makes more than one re-
cursive call in its recursive case. If we draw out the recursive calls, we see the recursive
calls in the shape of an upside-down tree:

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)fib(2)

We could, in theory, use loops to write the same procedure. However, problems that are
naturally solved using tree recursive procedures are generally difficult to write iteratively.
As a general rule of thumb, whenever you need to try multiple possibilities at the same
time, you should consider using tree recursion.

CS 61A Spring 2017



DISCUSSION 2: ENVIRONMENT DIAGRAMS AND RECURSION Page 10
1. I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each

time. How many different ways can I go up this flight of stairs? Write a function
count stair ways that solves this problem for me. Assume n is positive.

Before we start, what’s the base case for this question? What is the simplest input?

What do count stair ways(n - 1) and count stair ways(n - 2) represent?

Use those two recursive calls to write the recursive case:
def count_stair_ways(n):

2. Consider a special version of the count stairways problem, where instead of tak-
ing 1 or 2 steps, we are able to take up to and including k steps at a time.

Write a function count k that figures out the number of paths for this scenario.
def count_k(n, k):

"""
>>> count_k(3, 3) # 3, 2 + 1, 1 + 2, 1 + 1 + 1
4
>>> count_k(4, 4)
8
>>> count_k(10, 3)
274
>>> count_k(300, 1) # Only one step at a time
1
"""

CS 61A Spring 2017


