
Extra Lecture 8: Another Take on Declarative
Programming

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 1



Prolog and Predecessors

• Way back in 1959, researchers at CMU created GPS (General Prob-
lem Solver [A. Newell, J. C. Shaw, H. A. Simon])

– Input defined objects and allowable operations on them, plus a
description of the desired outcome.

– Output consisted of a sequence of operations to bring the out-
come about.

– Only worked for small problems, unsurprisingly.

• Planner at MIT [C. Hewitt, 1969] was another programming language
for theorem proving: one specified desired goal assertion, and sys-
tem would find rules to apply to demonstrate the assertion. Again,
this didn’t scale all that well.

• Planner was one inspiration for the development of the logic-programming
language Prolog.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 2



Prolog (Lisp Style)

• Let’s interpret Scheme expressions as logical assertions.

• For example, (likes brian potstickers) might be such an asser-
tion: likes is a predicate that relates brian and potstickers.

• We don’t interpret the arguments of the predicate: as far as Scheme
is concerned they are just uninterpreted data structures.

• We also allow one other type of expression: a symbol that starts
with a question mark will indicate a logical variable.

• An assertion such as (likes brian ?X) asserts that there is some
replacement for ?X that makes the assertion true.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 3



Facts and Rules

• We will make queries in the form of assertions, possibly with logical
variables.

• The system will look to see if the queries are true based on a database
of facts (axioms or postulates) about the predicates.

• It will inform us of what replacements for logical variables make the
assertion true.

• Each fact will have the form
(fact Conclusion Hypothesis1 Hypothesis2 . . . )

Meaning “For any substitution of logical variables in the Conclusion
and Hypotheses, we may derive the conclusion if we can derive each
of the hypotheses.”

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 4



Example: Family Relations

• First, some facts with no hypotheses:

(fact (parent george paul))

(fact (parent martin george))

(fact (parent martin martin jr))

(fact (parent martin donald))

(fact (parent george ann))

• Intended meanings: May deduce that george is paul’s parent, etc.

• Now some general rules about relations:

(fact (ancestor ?X ?Y) (parent ?X ?Y))

(fact (ancestor ?X ?Y) (parent ?X ?Z) (ancestor ?Z ?Y))

• Intended meanings:

– For any values of ?X and ?Y, if we can deduce that ?X is ?Y’s
parent, then we may deduce that ?X is ?Y’s ancestor.

– For any values of ?X, ?Y, and ?Z.if we can deduce that ?X is ?Z’s
parent, and ?Z is ?Y’s amcestor, then we may deduce that ?X is
?Z’s ancestor.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 5



Example, continued

(fact (parent george paul))

(fact (parent martin george))

(fact (parent martin martin jr))

(fact (parent martin donald))

(fact (parent george ann))

(fact (ancestor ?X ?Y) (parent ?X ?Y))

(fact (ancestor ?X ?Y) (parent ?X ?Z) (ancestor ?Z ?Y))

From these, we ought to be able to conclude that Martin is an ances-
tor of Ann, for example.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 6



Relations, Not Functions

• In this style of programming, we don’t define functions, but rather
relations.

• Instead of saying (abs -3) ==> 3, we say (abs -3 3) (that is, “3
stands in the abs relation to -3.”)

• Instead of (add x y) ==> z, we say (add x y z).

• This will allow us to run programs “both ways”: from inputs to out-
puts, or from outputs to inputs.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 7



Recap: A “Schemish” Prolog

• As a query, a Scheme expression, e.g. (ordered (0 1 2)) repre-
sents a logical assertion.

– Its top-level operator (e.g., ordered) names a predicate (true/false
function).

– Its operands are the data for this predicate: unlike Scheme pro-
grams, they don’t represent function calls—they are the literal
data. . .

– . . . with the exception that logical variables, represented as sym-
bols starting with ‘?’, stand for operands that may be replaced by
other expressions.

• To define a predicate, we give rules for it:

(fact CONCLUSION) means that CONCLUSION is to be taken
as true, for any replacement of its logical variables.

(fact CONCLUSION HYPOTHESIS . . . ) means that CONCLU-
SION is to be taken as true, assuming that the HYPOTHESES
can all be shown to be true. Again, this is for all replacements of
logical variables throughout the rule.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 8



Operational and Declarative Meanings

• Thus,

(fact (eats ?P ?F) (hungry ?P) (has ?P ?F) (likes ?P ?F))

means that for any replacement of ?P (e.g., ‘brian’) and ?F (e.g., ‘pot-
stickers’) throughout the rule:

Declarative Meaning If brian is hungry and has potstickers and
likes potstickers, then brian will eat potstickers.

Operational Meaning To show that brian will eat potstickers,
show that brian is hungry, then that brian has potstickers, and
then that brian likes potstickers.

• The declarative meaning allows us to look at our Scheme-Prolog pro-
gram as a logical specification of a problem for which the system is
to find a solution.

• The operational meaning allows us to look at our Scheme-Prolog spec-
ification as an executable program for searching for a solution.

• Closed Universe Assumption: We make only positive statements.
The closest we come to saying that something is false is to say that
we can’t prove it.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 9



How It’s Done (I): Unification

• In general, our system, given a target expression involving a predi-
cate to prove, must find a fact that might assert that target, given
a suitable replacement of logical variables.

• To do this, we try to pattern-match the conclusions of all our facts
against the target expression.

• The pattern matching is called unification, [J. A. Robinson].

• For example, we say that (likes brian potstickers) unifies with
the expression (likes ?P ?F), if we substitute brian for ?P and
potstickers for ?F.

• Might think of this substitution—called a unifier—as a Python dic-
tionary mapping logical variables to expressions.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 10



Unification (II)

• The substitution has to be uniform:

– Can unify (le 0 1) with (le ?X ?Y)

– But cannot unify (le 0 1) with (le ?X ?X)

• Everything is symmetric: if A unifies with B, then B unifies with A.
Logical variables can appear in one or both.

• It is possible for logical variables to be unified with each other:

Unify (likes ?P ?F) with (likes ?Q potstickers).

• We substitute potstickers for ?F, and choose either to substitute
?Q for ?P or vice-versa.

• The result in either case means that any person likes potstickers.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 11



Implementing Logical Variables and Substitutions

• A logical variable (?x) may be bound to any Scheme expression, in-
cluding a logical variable.

• The set of all these bindings is called a unifier.

• Unifiers are like environments, but work a little differently.

• If ?x is bound to ?y, then ?x is also bound to anything ?y is bound
to.

• At that point, binding either ?x or ?y to something other than a
logical variable binds both of them to that thing.

• Initially, every logical variable is bound to itself.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 12



Implementing Logical Variables and Substitutions (II)

• Main operations on unifiers are bind and binding:
class Unifier:

def init (self, init={}):

self.bindings = dict(init) # Makes a copy

def binding(self, expr):

"""Current binding of EXPR. If EXPR is not a logical

variable, always returns EXPR itself."""

while expr is in self.bindings:

expr = self.bindings[expr]

return expr

def bind(self, var, value):

assert is logical var(var)

self.bindings[var] = value

• Can use ability to copy environments to back out of an attempted
match.

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 13



Implementing Unification

A simple tree recursion with side-effects:

def unify(E0, E1, unif):

"""Returns True iff E0 and E1 can be unified by an extension

of UNIF. UNIF is modified to be this extension."""

def unify1(E0, E1):

E0 = unif.binding(E0); E1 = unif.binding(E1)

if scheme eqp(E0, E1): return True

if is logical var(E0):

unif.bind(E0, E1) # E0 is always unbound here

return True

elif is logical var(E1):

unif.bind(E1, E0) # E1 is always unbound here

return True

elif scheme atomp(E0) or scheme atomp(E1): return False

else:

return unify1(E0.first, E1.first) \

and unify1(E0.second, E1.second)

return unify1(E0, E1)

Last modified: Fri Apr 14 15:22:19 2017 CS61A: Extra Lecture #8 14


	Extra Lecture 8: Another Take on Declarative Programming
	Prolog and Predecessors
	Prolog (Lisp Style)
	Facts and Rules
	Example: Family Relations
	Example, continued
	Relations, Not Functions
	Recap: A ``Schemish'' Prolog
	Operational and Declarative Meanings
	How It's Done (I): Unification
	Unification (II)
	Implementing Logical Variables and Substitutions
	Implementing Logical Variables and Substitutions (II)
	Implementing Unification

