
Extra Lecture #7: Defining Syntax

• In effect, function and class definitions extend the Python language
by adding new commands and data types.

• However, these are highly constrained extensions.

• For example, the is no way to define

def swap(x, y):

"""Swap the values of variables X and Y."""

????

because Python used call-by-value.

• Likewise, there is generally no way to define a new control construct.

• Indeed, language extension can be dangerous; it’s easy to get wrong
and can make programs less easy to read or understand.

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 1

Macros

• A macro is a programming-language construct that allows one to de-
fine, in effect, a function that generates program text that is sub-
stituted for “calls” on the macro function.

• For example (making up some new Python syntax):

defmacro swap(x, y):

x, y = y, x

• A call on this macro, such as
swap(a[i], a[k])

would be expanded into

a[i], a[k] = a[k], a[i]

which is what actually gets executed.

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 2

Simple Macro Features

• The (imaginary) defmacro construct is essentially the same as the
macro facilities of C and C++.

• In those languages, the definition

#define BLUE 3

simply causes ‘3’ to be substituted for the identifier ‘BLUE’ wherever
it appears.

• And definitions such as

#define doList(Var, List) \

for (LinkedList* Var = List; Var != NULL; Var = Var->next)

expands

doList(A, myList)

into

for (LinkedList* A = myList; A != NULL; A = A->next)

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 3

C Macro Implementation

• These substitutions are performed in C and C++ by a preprocessor
program before standard compilation takes place.

• The preprocessor performs substitutions and deletes all the macro-
definition statements (as well as C/C++ comments).

• These macros do not observe scope rules; the macro preprocessor
actually knows almost nothing about C.

• In fact, one can use the C preprocessor as a separate program on
any kind of textual input data.

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 4

Bells and Whistles

• Aside from simple substitution of macro parameters, C/C++ macros
provide very little in the way of text processing. . .

• . . . aside from “stringification”:

#define defsym(x) x = #x

defsym(y) expands into y = "y"

• . . . and token concatenation:

#define doArray(var, A, low, high) \

for (int var ## _index = low; var ## _index < high; \

var ## _index += 1) { \

int var = (A)[var ## _index];

#define endDo }

This example allows one to write things like

doArray(p, anArray, 0, N)

printf("Item %d is %d.\n", p_index, p);

endDo

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 5

Conditional Compilation

• The C macro preprocessor also provides statements like this:

#if defined(NDEBUG)

#define assert(Test, Message)

#else

#define assert(Test, Message) \

if (!(Test)) { \

fprintf(stderr, "%s\n", Message); \

abort(1); \

}

#endif

• This example says that if a macro named NDEBUG is defined, we de-
fine a macro named assert to do nothing (it expands to nothing),
and otherwise it expands to a statement that tests whether an ex-
pression Test is true, and exits with an error message if it isn’t.

• Thus, when NDEBUG is defined, all assertions in the program are
“turned off” and consume no execution time.

• This facility is called conditional compilation. Everything here hap-
pens before any execution of the program.

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 6

Scheme Macros

• The Lisp family has its own version of macro processing, one that is
far more powerful than that of C.

• Scheme provides a powerful (but rather tricky) way to create new
special forms: define-syntax.

• One of the extensions of our project is a simpler, more traditional
form of this: define-macro.

• Macros are like functions, but

– Do not evaluate their arguments (this is what makes them special
forms).

– Automatically treat the returned value as a Scheme expression
and execute it.

• Thus, macros “write” programs that then get executed.

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 7

First: Quasiquote

• Writing programs that write programs entails constructing Scheme
expressions that often contain substantial constant parts (that one
would like to write as ordinary Scheme lists) with pieces that are
computed and differ from one expansion to another.

• For this purpose, it is convenient to have a minilanguage that allows
one to write expressions that resemble the expressions they pro-
duce.

• With quasiquote, I can write

(list ’a ’b (+ 2 3) ’d) ;; which produces (a b 5 d), as

‘(a b ,(+ 2 3) d) ;; That’s a backquote in front

• That is, everything preceded by a comma is replaced by its value.

• Additionally, in place of

(define values (list (+ 2 3) (- 2 1)))

(append ’(a b) values ’(d)) ;; which produces (a b 5 1 d), I can write

‘(a b ,@values d) or (a b ,@(list (+ 2 3) (- 2 1)) d)

• That is everything preceded by ‘,@’ is evaluated and its (list) value
spliced in.

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 8

Macro Example

• We may define a new looping construct:

(define-macro (while cond stmt)

‘(begin (define ($loop$) (if ,cond (begin ,stmt ($loop$))))

($loop$)))

• So (while (> x y) (set! x (f y))) first yields

(begin (define ($loop$)

(if (> x y) (begin (set! x (f y)) ($loop$))))

($loop$))

• And then this is executed.

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 9

A Macro for Streams

• Syntax extension allows us to define a convenient kind of stream in
Scheme.

• As we did in Python, a stream in Scheme will consist of a head, and
either a function to compute the tail or the tail itself.

(define-macro (cons-stream head tail)

‘(cons ,head (lambda () ,tail)))

• We’ll need a special cdr function that calls the tail computation (if
it is a function).

(define (cdr-stream str)

(if (procedure? (cdr str))

; Compute and memoize tail

(set-cdr! str ((cdr str))))

(cdr str))

• Actually, these are built into our (fully extended) project.

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 10

Streams in Scheme

;; The stream of all 1’s

(define ones (cons-stream 1 ones))

(car ones) ===> 1

(car (cdr-stream ones)) ===> 1

(define (add-streams a b) ; Infinite streams, that is

(cons-stream (+ (car a) (car b))

(add-streams (cdr-stream a) (cdr-stream b))))

;; The stream 1 2 3 ...

(define nums ?)

;; The Fibonacci sequence

(define fib (cons-stream 1

(cons-stream 1

?)))

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 11

Streams in Scheme

;; The stream of all 1’s

(define ones (cons-stream 1 ones))

(car ones) ===> 1

(car (cdr-stream ones)) ===> 1

(define (add-streams a b) ; Infinite streams, that is

(cons-stream (+ (car a) (car b))

(add-streams (cdr-stream a) (cdr-stream b))))

;; The stream 1 2 3 ...

(define nums (cons-stream 1 (add-streams ones nums)))

;; The Fibonacci sequence

(define fib (cons-stream 1

(cons-stream 1

?)))

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 12

Streams in Scheme

;; The stream of all 1’s

(define ones (cons-stream 1 ones))

(car ones) ===> 1

(car (cdr-stream ones)) ===> 1

(define (add-streams a b) ; Infinite streams, that is

(cons-stream (+ (car a) (car b))

(add-streams (cdr-stream a) (cdr-stream b))))

;; The stream 1 2 3 ...

(define nums (cons-stream 1 (add-streams ones nums)))

;; The Fibonacci sequence

(define fib (cons-stream 1

(cons-stream 1

(add-streams fib (cdr-stream fib)))))

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 13

Name Clashes

• The unnecessary use of macros has long been discouraged, because
they introduce some serious issues.

• Consider our loop example:

(define-macro (while cond stmt)

‘(begin (define ($loop$) (if ,cond (begin ,stmt ($loop$))))

($loop$)))

• The identifier $loop$ is intended to be local to the macro. I gave it
a funny name to make it unlikely that it will conflict with any names
the programmer has used.

• But there’s no guarantee that I’ve succeeded in preventing a name
clash.

• One solution: some Lisp dialects supply a builtin function that gen-
erates new symbols that are guaranteed to differ from all other
symbols.

(define-macro (while cond stmt)

(define loop-sym (gensym))

‘(begin (define (,loop-sym) (if ,cond (begin ,stmt (,loop-sym))))

(,loop-sym)))

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 14

Real Scheme Approach

• Real Scheme allows a general syntax-definition construct that cre-
ates local variables as needed (among other things).

(define-syntax while

(syntax-rules ()

((pred b1 ...)

(let loop () (when pred b1 ... (loop))))))

Last modified: Fri Apr 7 18:15:08 2017 CS61A: Extra Lecture #7 15

	Extra Lecture #7: Defining Syntax
	Macros
	Simple Macro Features
	C Macro Implementation
	Bells and Whistles
	Conditional Compilation
	Scheme Macros
	First: Quasiquote
	Macro Example
	A Macro for Streams
	Streams in Scheme
	Name Clashes
	Real Scheme Approach

