
Sign In

• Website: https://goo.gl/forms/FzHSa5INKlavWIJC3

• Enter the word of the day in the appropriate slot.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 1

https://goo.gl/forms/FzHSa5INKlavWIJC3

Lecture #5: Parallelism

• Moore’s law (“Transistors per chip doubles every N years”), where
N is roughly 2 (about 5, 000, 000× increase since 1971).

• Similar rule applied to processor speeds until around 2004.

• Speeds have flattened: further increases to be obtained through
parallel processing (witness: multicore/manycore processors).

• With distributed processing, issues involve interfaces, reliability,
communication issues.

• With other parallel computing, where the aim is performance, issues
involve synchronization, balancing loads among processors, and, yes,
“data choreography” and communication costs.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 2

Example of Parallelism: Sorting

• Sorting a list presents obvious opportunities for parallelization.

• Can illustrate various methods diagrammatically using comparators
as an elementary unit:

1

2

4

3

1

2

3

4

• Each vertical bar represents a comparator—a comparison operation
or hardware to carry it out—and each horizontal line carries a data
item from the list.

• A comparator compares two data items coming from the left, swap-
ping them if the lower one is larger than the upper one.

• Comparators can be grouped into operations that may happen simul-
taneously; they are always grouped if stacked vertically as in the
diagram.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 3

Sequential sorting

• One (wasteful but simple) way to sort a list of items into ascending
order goes like this:

for i in range(len(L) - 1):

for j in range(len(L) - 1):

if L[j] > L[j + 1]:

L[j], L[j+1] = L[j+1], L[j]

• In general, there will be Θ(?) steps.

• Diagrammatically (read bottom to top):

4

3

2

1

3

4

2

1

3

2

4

1

3

2

1

4

2

3

1

4

2

1

3

4

1

2

3

4

• Each comparator is a separate operation in time.

• Many comparators operate on distinct data, but unfortunately, there
is an overlap between the operations in adjacent columns.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 4

Sequential sorting

• One (wasteful but simple) way to sort a list of items into ascending
order goes like this:

for i in range(len(L) - 1):

for j in range(len(L) - 1):

if L[j] > L[j + 1]:

L[j], L[j+1] = L[j+1], L[j]

• In general, there will be Θ(N 2) steps.

• Diagrammatically (read bottom to top):

4

3

2

1

3

4

2

1

3

2

4

1

3

2

1

4

2

3

1

4

2

1

3

4

1

2

3

4

• Each comparator is a separate operation in time.

• Many comparators operate on distinct data, but unfortunately, there
is an overlap between the operations in adjacent columns.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 5

A Reorganization

• It’s not obvious, but we can accomplish the same final result with a
different order of swaps:

for c in range(len(L)):

Swap even/odd pairs when c is even, odd/even pairs when c is odd

for j in range(c % 2, len(L) - 1, 2):

if L[j] > L[j + 1]: L[j], L[j+1] = L[j+1], L[j]

4

3

2

1

c = 0

3

4

2

1

c = 0

3

4

1

2

c = 1

3

1

4

2

c = 2

1

3

4

2

c = 2

1

3

2

4

c = 3

1

2

3

4

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 6

Exploiting Parallelism

• With this reorganization, can exploit parallelism, because not all
columns need be executed in sequence. Thus, the sequential pro-
gram:

4

3

2

1

c = 0

3

4

2

1

c = 0

3

4

1

2

c = 1

3

1

4

2

c = 2

1

3

4

2

c = 2

1

3

2

4

c = 3

1

2

3

4

• Can be partially overlapped, saving two steps:

4

3

2

1

c = 0

3

4

1

2

c = 1

3

1

4

2

c = 2

1

3

2

4

c = 3

1

2

3

4

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 7

Odd-Even Transposition Sorter

• Here’s a larger example:

The dashed lines separate parallel groups. Everything in one group
can happen in parallel, one group at a time in sequence.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 8

Odd-Even Sort Example

8
7
6
5
4
3
2
1

7
8
5
6
3
4
1
2

7
5
8
3
6
1
4
2

5
7
3
8
1
6
2
4

5
3
7
1
8
2
6
4

3
5
1
7
2
8
4
6

3
1
5
2
7
4
8
6

1
3
2
5
4
7
6
8

1
2
3
4
5
6
7
8

• What would have been 28 separate sequential operations (in general
about N(N − 1)/2) becomes 8 (N) parallel operations.

• Assuming we have enough processors, we have sped things up by a
factor of about N/2.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 9

Other Kinds of Sorting

• Another way to sort a list is merge sort:

def sort(L, first, last):

if first < last:

middle = (first + last) // 2

sort(L, first, middle)

sort(L, middle+1, last)

L[:] = merge(L[first:middle+1], L[middle+1:last+1])

Merge takes two sorted lists and interleaves

them into a single sorted list.

• Assuming that merging takes time Θ(N) for two lists of size N/2,
this operation takes Θ(?) steps.

• We can reorder its operations to get (Batcher’s) bitonic sort, which
can sort in Θ((lgN)2) time.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 10

Other Kinds of Sorting

• Another way to sort a list is merge sort:

def sort(L, first, last):

if first < last:

middle = (first + last) // 2

sort(L, first, middle)

sort(L, middle+1, last)

L[:] = merge(L[first:middle+1], L[middle+1:last+1])

Merge takes two sorted lists and interleaves

them into a single sorted list.

• Assuming that merging takes time Θ(N) for two lists of size N/2,
this operation takes Θ(N lgN) steps.

• We can reorder its operations to get (Batcher’s) bitonic sort, which
can sort in Θ((lgN)2) time.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 11

Example: Bitonic Sorter

Data Comparator Separates parallel groups

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 12

Bitonic Sort Example (I)

48
56
35
13
15
99
7
24
92
6
52
1
47
8
16
77

48
56
13
35
15
99
7
24
6
92
1
52
8
47
16
77

35
13
56
48
15
7
99
24
6
1
92
52
8
16
47
77

13
35
48
56
7
15
24
99
1
6
52
92
8
16
47
77

13
24
15
7
56
48
35
99
1
6
16
8
92
52
47
77

13
7
15
24
35
48
56
99
1
6
16
8
47
52
92
77

7
13
15
24
35
48
56
99
1
6
8
16
47
52
77
92

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 13

Bitonic Sort Example (II)

7

13

15

24

35

48

56

99

1

6

8

16

47

52

77

92

7

13

15

24

16

8

6

1

99

56

48

35

47

52

77

92

7

8

6

1

16

13

15

24

47

52

48

35

99

56

77

92

6

1

7

8

15

13

16

24

47

35

48

52

77

56

99

92

1

6

7

8

13

15

16

24

35

47

48

52

56

77

92

99

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 14

Implementing Parallel Programs

• The sorting diagrams were abstractions.

• Comparators could be processors, or they could be operations di-
vided up among one or more processors.

• Coordinating all of this is the issue.

• One approach is to use shared memory, where multiple processors
(logical or physical) share one memory.

• This introduces conflicts in the form of race conditions: processors
racing to access data.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 15

Memory Conflicts: Abstracting the Essentials

• When considering problems relating to shared-memory conflicts,
it is useful to look at the primitive read-to-memory and write-to-
memory operations.

• E.g., the program statements on the left cause the actions on the
right.

x = 5 WRITE 5 -> x

x = square(x) READ x -> 5

(calculate 5*5 -> 25)

WRITE 25 -> x

y = 6 WRITE 6 -> y

y += 1 READ y -> 6

(calculate 6+1 -> 7)

WRITE 7 -> y

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 16

Conflict-Free Computation

• Suppose we divide this program into two separate processes, P1 and
P2:

x = 5

x = square(x)

y = 6

y += 1

P1 P2

WRITE 5 -> x

READ x -> 5

(calculate 5*5 -> 25)

WRITE 25 -> x

WRITE 6 -> y

READ y -> 6

(calculate 6+1 -> 7)

WRITE 7 -> y

x = 25

y = 7

• The result will be the same regardless of which process’s READs and
WRITEs happen first, because they reference different variables.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 17

Read-Write Conflicts

• Suppose that both processes read from x after it is initialized.

x = 5

x = square(x) y = x + 1

P1 P2

READ x -> 5

(calculate 5*5 -> 25)

WRITE 25 -> x

|

|

READ x -> 5

(calculate 5+1 -> 6)

WRITE 6 -> y

x = 25

y = 6

• The statements in P2 must appear in the given order, but they need
not line up like this with statements in P1, because the execution of
P1 and P2 is independent.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 18

Read-Write Conflicts (II)

• Here’s another possible sequence of events

x = 5

x = square(x) y = x + 1

P1 P2

READ x -> 5

(calculate 5*5 -> 25)

WRITE 25 -> x

|

|

|

|

|

|

READ x -> 25

(calculate 25+1 -> 26)

WRITE 26 -> y

x = 25

y = 26

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 19

Read-Write Conflicts (III)

• The problem here is that nothing forces P1 to wait for P1 to read x

before setting it.

• Observation: The “calculate” lines have no effect on the outcome.
They represent actions that are entirely local to one processor.

• The effect of “computation” is simply to delay one processor.

• But processors are assumed to be delayable by many factors, such
as time-slicing (handing a processor over to another user’s task), or
processor speed.

• So the effect of computation adds nothing new to our simple model
of shared-memory contention that isn’t already covered by allowing
any statement in one process to get delayed by any amount.

• So we’ll just look at READ and WRITE in the future.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 20

Write-Write Conflicts

• Suppose both processes write to x:

x = 5

x = square(x) x = x + 1

P1 P2

|

READ x -> 5

|

|

WRITE 25 -> x

READ x -> 5

|

WRITE 6 -> x

|

x = 25

• This is a write-write conflict: two processes race to be the one that
“gets the last word” on the value of x.

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 21

Write-Write Conflicts (II)

x = 5

x = square(x) x = x + 1

P1 P2

|

READ x -> 5

WRITE 25 -> x

|

READ x -> 5

|

|

WRITE 6 -> x

x = 6

• This ordering is also possible; P2 gets the last word.

• There are also read-write conflicts here. What is the total number
of possible final values for x?

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 22

Write-Write Conflicts (II)

x = 5

x = square(x) x = x + 1

P1 P2

|

READ x -> 5

WRITE 25 -> x

|

READ x -> 5

|

|

WRITE 6 -> x

x = 6

• This ordering is also possible; P2 gets the last word.

• There are also read-write conflicts here. What is the total number
of possible final values for x? Four: 25, 5, 26, 36

Last modified: Fri Mar 24 18:09:15 2017 CS198: Extra Lecture #6 23

	Sign In
	Lecture #5: Parallelism
	Example of Parallelism: Sorting
	Sequential sorting
	A Reorganization
	Exploiting Parallelism
	Odd-Even Transposition Sorter
	Odd-Even Sort Example
	Other Kinds of Sorting
	Example: Bitonic Sorter
	Bitonic Sort Example (I)
	Bitonic Sort Example (II)
	Implementing Parallel Programs
	Memory Conflicts: Abstracting the Essentials
	Conflict-Free Computation
	Read-Write Conflicts
	Read-Write Conflicts (II)
	Read-Write Conflicts (III)
	Write-Write Conflicts
	Write-Write Conflicts (II)

