Sign In

- Website: https://goo.gl/forms/FzHSa5INKlavWIJC3
- Enter the word of the day in the appropriate slot.

Lecture \#5: Parallelism

- Moore's law ("Transistors per chip doubles every N years"), where N is roughly 2 (about $5,000,000 \times$ increase since 1971).
- Similar rule applied to processor speeds until around 2004.
- Speeds have flattened: further increases to be obtained through parallel processing (witness: multicore/manycore processors).
- With distributed processing, issues involve interfaces, reliability, communication issues.
- With other parallel computing, where the aim is performance, issues involve synchronization, balancing loads among processors, and, yes, "data choreography" and communication costs.

Example of Parallelism: Sorting

- Sorting a list presents obvious opportunities for parallelization.
- Can illustrate various methods diagrammatically using comparators as an elementary unit:

- Each vertical bar represents a comparator-a comparison operation or hardware to carry it out-and each horizontal line carries a data item from the list.
- A comparator compares two data items coming from the left, swapping them if the lower one is larger than the upper one.
- Comparators can be grouped into operations that may happen simultaneously; they are always grouped if stacked vertically as in the diagram.

Sequential sorting

- One (wasteful but simple) way to sort a list of items into ascending order goes like this:

```
for i in range(len(L) - 1):
    for j in range(len(L) - 1):
        if L[j] > L[j + 1]:
        L[j],L[j+1] = L[j+1], L[j]
```

- In general, there will be $\Theta($?) steps.
- Diagrammatically (read bottom to top):

- Each comparator is a separate operation in time.
- Many comparators operate on distinct data, but unfortunately, there is an overlap between the operations in adjacent columns.

Sequential sorting

- One (wasteful but simple) way to sort a list of items into ascending order goes like this:

```
for i in range(len(L) - 1):
    for j in range(len(L) - 1):
        if L[j] > L[j + 1]:
        L[j],L[j+1] = L[j+1], L[j]
```

- In general, there will be $\Theta\left(N^{2}\right)$ steps.
- Diagrammatically (read bottom to top):

- Each comparator is a separate operation in time.
- Many comparators operate on distinct data, but unfortunately, there is an overlap between the operations in adjacent columns.

A Reorganization

- It's not obvious, but we can accomplish the same final result with a different order of swaps:

```
for c in range(len(L)):
    # Swap even/odd pairs when c is even, odd/even pairs when c is odd
    for j in range(c % 2, len(L) - 1, 2):
        if L[j] > L[j + 1]: L[j], L[j+1] = L[j+1], L[j]
```


Exploiting Parallelism

- With this reorganization, can exploit parallelism, because not all columns need be executed in sequence. Thus, the sequential program:

- Can be partially overlapped, saving two steps:

Odd-Even Transposition Sorter

- Here's a larger example:

The dashed lines separate parallel groups. Everything in one group can happen in parallel, one group at a time in sequence.

Odd-Even Sort Example

- What would have been 28 separate sequential operations (in general about $N(N-1) / 2$) becomes $8(N)$ parallel operations.
- Assuming we have enough processors, we have sped things up by a factor of about $N / 2$.

Other Kinds of Sorting

- Another way to sort a list is merge sort:

```
def sort(L, first, last):
    if first < last:
        middle = (first + last) // 2
        sort(L, first, middle)
        sort(L, middle+1, last)
        L[:] = merge(L[first:middle+1], L[middle+1:last+1])
        # Merge takes two sorted lists and interleaves
        # them into a single sorted list.
```

- Assuming that merging takes time $\Theta(N)$ for two lists of size $N / 2$, this operation takes Θ (?) steps.
- We can reorder its operations to get (Batcher's) bitonic sort, which can sort in $\Theta\left((\lg N)^{2}\right)$ time.

Other Kinds of Sorting

- Another way to sort a list is merge sort:

```
def sort(L, first, last):
    if first < last:
        middle = (first + last) // 2
        sort(L, first, middle)
        sort(L, middle+1, last)
        L[:] = merge(L[first:middle+1], L[middle+1:last+1])
        # Merge takes two sorted lists and interleaves
        # them into a single sorted list.
```

- Assuming that merging takes time $\Theta(N)$ for two lists of size $N / 2$, this operation takes $\Theta(N \lg N)$ steps.
- We can reorder its operations to get (Batcher's) bitonic sort, which can sort in $\Theta\left((\lg N)^{2}\right)$ time.

Example: Bitonic Sorter

Bitonic Sort Example (I)

Bitonic Sort Example (II)

Implementing Parallel Programs

- The sorting diagrams were abstractions.
- Comparators could be processors, or they could be operations divided up among one or more processors.
- Coordinating all of this is the issue.
- One approach is to use shared memory, where multiple processors (logical or physical) share one memory.
- This introduces conflicts in the form of race conditions: processors racing to access data.

Memory Conflicts: Abstracting the Essentials

- When considering problems relating to shared-memory conflicts, it is useful to look at the primitive read-to-memory and write-tomemory operations.
- E.g., the program statements on the left cause the actions on the right.

```
x = 5 WRITE 5 -> x
x = square (x) READ x -> 5
    (calculate 5*5 -> 25)
WRITE 25 -> x
y = 6 WRITE 6 -> y
y += 1 READ y >> 6
    (calculate 6+1 -> 7)
WRITE 7 -> y
```


Conflict-Free Computation

- Suppose we divide this program into two separate processes, P1 and P2:

$\begin{aligned} & \mathrm{x}=5 \\ & \mathrm{x}=\operatorname{square}(\mathrm{x}) \end{aligned}$	$\begin{aligned} & y=6 \\ & y+=1 \end{aligned}$
P1	P2
WRITE 5 -> x READ x -> 5 (calculate $5 * 5$-> 25) WRITE 25 -> x	WRITE $6->y$ READ y -> 6 (calculate 6+1 -> 7) WRITE 7 -> y
$x=25$	

- The result will be the same regardless of which process's READs and WRITEs happen first, because they reference different variables.

Read-Write Conflicts

- Suppose that both processes read from x after it is initialized.

$\mathrm{x}=5$	
$\mathrm{x}=\operatorname{square}(\mathrm{x})$	$y=x+1$
P1	P2
```READ x -> 5 (calculate 5*5 -> 25) WRITE 25 -> x \|```	```\| READ x -> 5 (calculate 5+1 -> 6) WRITE 6 -> y```
$x=25$	

- The statements in P2 must appear in the given order, but they need not line up like this with statements in P1, because the execution of P 1 and P 2 is independent.


## Read-Write Conflicts (II)

- Here's another possible sequence of events

$\mathrm{x}=5$	
$\mathrm{x}=$ square $(\mathrm{x}$ )	$y=x+1$
P1	P2
```READ x -> 5 (calculate 5*5 -> 25) WRITE 25 -> x```	
	25 26

Read-Write Conflicts (III)

- The problem here is that nothing forces P1 to wait for P1 to read x before setting it.
- Observation: The "calculate" lines have no effect on the outcome. They represent actions that are entirely local to one processor.
- The effect of "computation" is simply to delay one processor.
- But processors are assumed to be delayable by many factors, such as time-slicing (handing a processor over to another user's task), or processor speed.
- So the effect of computation adds nothing new to our simple model of shared-memory contention that isn't already covered by allowing any statement in one process to get delayed by any amount.
- So we'll just look at READ and WRITE in the future.

Write-Write Conflicts

- Suppose both processes write to x :

$\mathrm{x}=5$		
$\mathrm{x}=$ square (x)	$\mathrm{x}=\mathrm{x}+1$	
P1	P2	
I READ x -> 5 I WRITE 25 -> x	```READ x -> 5 \| WRITE 6 -> x	```

- This is a write-write conflict: two processes race to be the one that "gets the last word" on the value of x .

Write-Write Conflicts (II)

$\mathrm{x}=5$	
$\mathrm{x}=$ square (x)	$\mathrm{x}=\mathrm{x}+1$
P1	P2
I READ x -> 5 WRITE 25 -> x I	$\left\lvert\, \begin{array}{llll} \text { READ x } \\ \mid \\ \mid \\ \text { WRITE } & & & \\ \text {-> } \end{array}\right.$

- This ordering is also possible; P2 gets the last word.
- There are also read-write conflicts here. What is the total number of possible final values for x ?

Write-Write Conflicts (II)

$\mathrm{x}=5$	
$\mathrm{x}=$ square (x)	$\mathrm{x}=\mathrm{x}+1$
P1	P2
I READ x -> 5 WRITE 25 -> x I	$\left\lvert\, \begin{array}{llll} \text { READ x } \\ \mid \\ \mid \\ \text { WRITE } & & & \\ \text {-> } \end{array}\right.$

- This ordering is also possible; P2 gets the last word.
- There are also read-write conflicts here. What is the total number of possible final values for x ? Four: $25,5,26,36$

