Sign In

e Website: https://goo.gl/forms/FzHSa5INK1avWIJC3
e Enter the word of the day in the appropriate slot.

Last modified: Sun Mar 19 15:11:24 2017 CS5198: Extra Lecture #5 1


https://goo.gl/forms/FzHSa5INKlavWIJC3

Lecture #5: Objects and Object Metaphors

e Problem: How to implement the behavior of classes and objects?
e Main points to get:
- Objects have attributes.

- An object may inherit an attribute from its class if it does not
define that attribute itself.

- Likewise, a class may inherit attributes from its parent class(es).

- In Python, attributes of objects and classes may be added dy-
namically.

- In Python, attributes of objects that are methods become bound
methods when fetched from the object’s class.

Last modified: Sun Mar 19 15:11:24 2017 CS5198: Extra Lecture #5 2



Python's Representation

e In essence, Python uses a look-up technique that parallels the inher-
itance diagrams we've shown.

e Think of objects as tuples (D, C') where

- D is a dictionary, x. _dict__,
-Cisaclass x. class._

Last modified: Sun Mar 19 15:11:24 2017 CS5198: Extra Lecture #5 3



Fetching a Value

e Fetching an attribute now looks like this:
def fetch(obj, attr):

"""Fetch the attribute named ATTR from 0BJ (an object or

Cl&SS)."""

d, ¢ = obj # Get the pieces of the object

if attr in d:
return dlattr]
if ¢ is the type of all classes:

for ¢l in d[’_mro ’]: # What’s this?
if attr in c1[0]: # The dictionary part

return cl[0] [attr]
raise AttributeError
else:

v = fetch(c, attr)
if v is amethod:

return make bound method(obj, v)
else:

return v

Last modified: Sun Mar 19 15:11:24 2017

CS198: Extra Lecture #5



The Method Resolution Order

e When a class has base classes (as is true of all classes but object),
the order in which they (and their ancestors) are searched matters,
because several may define the same attribute.

e This order is called the method resolution order.
e It's simple when all classes have one (or zero) base classes:

- Search the class.
- Recursively search its base class, if any.

e Things get interesting when there is multiple inheritance, because
the same ancestor class can turn up several times when search up
through the inheritance chain.

e For more on this issue (and for how Python actually computes its
MRO), search for "Python MRO" (or take CS164!).

Last modified: Sun Mar 19 15:11:24 2017 CS5198: Extra Lecture #5 5



Less Dynamic Approaches

e Python programs can be slow compared to algorithmically equivalent
Java or C++ programs in part because of Python's very dynamic ob-
ject system.

e Languages such as Java or C++ do not allow the dynamic introduction
of new methods.

e This allows considerable speed optimizations.

Last modified: Sun Mar 19 15:11:24 2017 CS5198: Extra Lecture #5 6



Virtual Tables

e Rather than dictionaries, Java and C++ use (in effect) lists.

e Instead of searching for strings during execution, the compiler as-
signs a number to each attribute, and uses list indexing.

e All objects containall their possible instance variables (new ones are
never added) and these are at precomputed indices.

e Each class is represented by a virtual table or dispatch table con-
taining both methods defined in that class and those inherited from
its base classes (also indexed by attribute number), plus other in-
formation about the class.

e All objects contain a pointer to the virtual table for their class.

Last modified: Sun Mar 19 15:11:24 2017 CS198: Extra Lecture #5 7



Example

class A:
x =0 # Index 1
def f(self): print("A.f") # Index 1

def g(self): print("A.g") # Index 2

class B(A):
y=1 # Index 2

def f(self): print("B.f") # Index 1
def h(self): print("B.h") # Index 3
aB = B(O)
aB.g()
z = aB.x

# Is represented by

A = [ [object], lambda self: print("A.f"), lambda self: print("A.g")]

B = [ [A], lambda self: print("B.f"), A[2], lambda self: print("B.h") ]
aB = [B, 0, 1] # Assume aB.x, aB.y initialized from the classes
aB[0] [2] (aB)

z = aB[1]

Last modified: Sun Mar 19 15:11:24 2017 CS5198: Extra Lecture #5 8



Nouns as Objects: Constraints

[See .py file]

Last modified: Sun Mar 19 15:11:24 2017 CS5198: Extra Lecture #5 9



	Sign In
	Lecture #5: Objects and Object Metaphors
	Python's Representation
	Fetching a Value
	The Method Resolution Order
	Less Dynamic Approaches
	Virtual Tables
	Example
	Nouns as Objects: Constraints

