- Website: https://goo.gl/forms/FzHSa5INKlavWIJC3
- Enter the word of the day in the appropriate slot.

Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4

# Lecture #4: Simple Compression: Huffman Trees

- $\bullet$  Strings are composed of characters, which (like everything else in a computer) are represented as bit strings.
- The relationship between characters and their bit representations (encodings or code points) is arbitrary. Standardization is necessary to prevent chaos.
- Python now uses an international standard known as *Unicode*, which encodes (as of Version 9.0) 128,237 characters, using code points that range from 0-1,114,111.
- These cover 135 scripts (roughly, alphabets), and various sets of symbols: punctuation, control characters (like tab or newline), mathematical symbols, etc.
- A few examples:

| "\u0040" | "\u0030" | "\u0061"   | "\u0041" | Literal  |
|----------|----------|------------|----------|----------|
| ര        | 0        | Ω          | A        | Glyph    |
| "\u05D0" | "\u00E9" | "\u00A9"   | "\u00A7" | Encoding |
| z        | ው        | 0          | တ        | Glyph    |
|          | "\u2639" | "\u2663"   | "\u0398" | Encoding |
|          | 03       | <b>}</b> • | Φ        | Glyph    |

Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4

## More Efficient Encoding

- If every character in a text is represented by an integer value in the full range, we'd have 3 bytes (24 bits) per character.
- So usually, the code points themselves are encoded.
- One common encoding, UTF-8, uses 1-4 bytes per character, depending on the number of significant bits in the code point.

| Bits  | Range of                                                          | Byte 1   | Byte 1   Byte 2   Byte 3   Byte 4 | Byte 3   | Byte 4   |
|-------|-------------------------------------------------------------------|----------|-----------------------------------|----------|----------|
| Coded | code points                                                       |          |                                   |          |          |
| 7     | 0x0000 0x007F                                                     | xxxxxxx0 |                                   |          |          |
| 11    | 0x0080 0x07FF 110xxxxx 10xxxxxx                                   | 110xxxxx | 10xxxxxx                          |          |          |
| 16    | 0x0800 0xFFFF 1110xxxx 10xxxxxx 10xxxxxx                          | 1110xxxx | 10xxxxxx                          | 10xxxxxx |          |
| 21    | 21   0x10000 0x10FFFF   11110xxx   10xxxxxx   10xxxxxx   10xxxxxx | 11110xxx | 10xxxxxx                          | 10xxxxxx | 10xxxxxx |

- $\bullet$  x's mark places containing the bits of the code points. The other bits flag how many bytes are needed.
- Where one-byte characters are common, this saves space
- One clever feature is that bytes 2-4 (continuation bytes) all start with a distinctive pattern (10), so that if one starts at any byte in an array of bytes, one can find the beginning of the character.

Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4 3

## Still More Efficient

- We can, however, do better still by using other variable-length en-codings that can use less than a byte per character.
- There's potential problem with this idea, however: ambiguity
- Suppose we tried an encoding like this, using shorter codes for more common letters:

 $E \Rightarrow 0$ ,  $T \Rightarrow 1$ ,  $A \Rightarrow 10$ ,  $0 \Rightarrow 11$ ,  $I \Rightarrow 100$ ,

- And suppose we receive the bits 100.
- Is this "TEE", "AE", or "I"? Where does one letter end and the next

Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4

## Unique Prefix Property

- This ambiguity problem can be solved by choosing a code with the Unique Prefix Property: The bit encoding for any character is never a prefix of the encoding of any other character.
- For example, the encoding

=> 0, T => 10, A => 1101, O => 1100, I => 1110, ...

has this property (at least for the characters shown). No encodings appears at the beginning of any other.

- E.g., "TEE" encodes to 1000, "AE" to 11010, and 'I' to 1110
- works from the left. There is never any ambiguity about where a character begins, if one
- Starting from a given bit position, p, as soon as one collects bits that match the encoding of character C, we know that C has to be the character that starts at p, since adding more bits can never match another character.

## Decoding Using the Unique Prefix Property

- Given a bit encoding with the unique prefix property, how do we decode?
- Discussion in previous slide gives one solution using a dictionary to map encodings to characters.
- Suppose  ${\cal D}$  is a dictionary from such strings of 0s and 1s to charac For simplicity, imagine our encoded text as a string of 0s and 1s (not a representation you'd actually use in practice!).
- Then,

def decode(msg):
 """Convert encoded message MSG into the character string it represents."""
 ch = "" for b in msg:
 ch += b
 if ch in D: result = "" result += D[ch] ch = ""

Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4

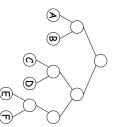
Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4

#### **Using Trees**

Binary trees offer a particular way to represent the dictionary from the last slide.

| п | m    | D   | С   | В  | A | Letter   |
|---|------|-----|-----|----|---|----------|
| 3 | 1100 | 101 | 100 | 21 | 8 | Encoding |



- Left branches tell what to do when looking at a 0 bit; right branches
  do the same for 1 bits (result is called a Patricia tree.
- To decode, e.g., 11010010111100,
- Following bits 1101 (right, right, left, right) takes us to leaf 'F'
- Returning to the top, 00 takes us to 'A'.
- Again from the top, 101 takes us to 'D'.
- Finally, 1100 gives 'E'. Complete decoding: "FADE".

CS198: Extra Lecture #4

#### A Problem

- How, then, do we get an encoding that
- Minimizes the size of a text, and
- unambiguously.) Satisfies the unique prefix property (so that it can be decoded
- There is no universal encoding that does this for any text.
- We'd like an algorithn that finds a custom-made optimal encoding for any particular text.
- Idea is to encode more common charcters in fewer bits

Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4 8

### Huffman Coding

- Huffman coding is named after an MIT student who invented this encoding in response to a class assignment.
- Given an alphabet of symbols to be encoded, with their relative frequencies in a text, it produces the optimal variable-width unique-prefix encoding, assuming that we encode individual characters independently.
- a single character. Basic idea is to accumulate trees representing subsets of characters from the bottom up, starting with trivial trees each containing
- Each time two trees are clustered into one under a new parent node, it represents an additional bit in the coding, so it is best to prefer clustering trees that represent characters with smallest frequency.

#### Example

- Want to encode string "AAAAAAAAAABBBBBCCCCCCCDDDDDDDDEEEF"
- Here, the frequencies are

| TI | m | 0 | C | В | A  | Letter |
|----|---|---|---|---|----|--------|
| 1  | ω | 9 | 7 | Ŋ | 10 | Coun:  |

 Represent as 6 one-node trees labeled with letters and their frequencies:

(FZ

E/3





(A/10)

Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4

Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4 10

### Forming Subtrees

- Starting with
- (F)1 (E/3)
- B/5
- (2)
- (b/9)

(A/10)

"bigger" node representing both the characters E and F: We combine the two nodes with the smallest frequencies to get  $\boldsymbol{\alpha}$ 



(b/9)

(1) (1)



(F/1



(2)





Keeping the resulting trees in order by frequency, repeat:







Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4

Last modified: Fri Mar 10 17:54:45 2017

CS198: Extra Lecture #4

Forming Subtrees (II)



And again:





|  | • And yet again:  (15)  (27) (19) (27) (19) (27) (19) (27) (29) (29) (21) (21) (21) (21) (21) (21) (21) (21                                                      |
|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Forming Subtrees (IV)  • Finally, we get the tree on the left, which corresponds to the encoding table on the right  (16) (19) (19) (19) (19) (19) (19) (19) (19 |