Sign In

¢ Website: https://goo.gl/forms/FzHSa5INK1avWIJC3
e Enter the word of the day in the appropriate slot.

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 1

Lecture #4: Simple Compression: Huffman Trees

e Strings are composed of characters, which (like everything else ina
computer) are represented as bit strings.

¢ The relationship between characters and their bit representations
(encodings or code points) is arbitrary. Standardization is neces-
sary to prevent chaos.

e Python now uses an international standard known as Unicode, which

encodes (as of Version 9.0) 128,237 characters, using code points
that range from 0-1,114,111.

e These cover 135 scripts (roughly, alphabets), and various sets of
symbols: punctuation, control characters (like tab or newline), math-
ematical symbols, etc.

* A few examples:

Literal 7m_<v£ Encoding | Glyph | Encoding | Glyph

"\u0041" "\uOOA7" § "\u0398"| ©
"\u0061" a "\u00A9" | © |"\u2663"| &
"\u0030"| O "\uOOE9" é "\u2639"| ©®
"\u0040" | @ |"\u05D0"| N

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 2

More Efficient Encoding

o If every character in a text is represented by an integer value in
the full range, we'd have 3 bytes (24 bits) per character.

e So usually, the code points themselves are encoded.

¢ One common encoding, UTF-8, uses 1-4 bytes per character, de-
pending on the number of significant bits in the code point.

Bits Range of Byte 1 | Byte 2 | Byte 3 | Byte 4
Coded code points |
7 0x0000 .. OxO007F |OXXXXXXX

11 0x0080 .. OxO7FF |110xxxxx |10XXXXXX
16 7 0x0800 .. OxFFFF |[1110xxxx 10xxxxxX|10XXXXXX
21 7oxpoooo .. Ox10FFFF|11110xxx | 10xxxxxx | 10xx 10XXXXXX

¢ x's mark places containing the bits of the code points. The other
bits flag how many bytes are needed.

» Where one-byte characters are common, this saves space.

e One clever feature is that bytes 2-4 (continuation bytes) all start
with a distinctive pattern (10), so that if one starts at any byte in
an array of bytes, one can find the beginning of the character.

Last modified: Fri Mar 10 17:54:45 2017 €S198: ExtraLecture #4 3

Unique Prefix Property

¢ This ambiguity problem can be solved by choosing a code with the
Unique Prefix Property: The bit encoding for any character is
never a prefix of the encoding of any other character.
o For example, the encoding
E=>0, T =>10, A => 1101, 0 => 1100, I => 1110,
has this property (at least for the characters shown). No encodings
appears at the beginning of any other.
e Eg., "TEE" encodes to 1000, "AE" to 11010, and 'T' to 1110.
¢ There is never any ambiguity about where a character begins, if one
works from the left.

e Starting from a given bit position, p, as soon as one collects bits that
match the encoding of character C, we know that C has to be the
character that starts at p, since adding more bits can never match
another character.

Last modified: Fri Mar 10 17:54:45 2017 €S198: ExtraLecture #4 5

Still More Efficient

¢ We can, however, do better still by using other variable-length en-
codings that can use less than a byte per character.

o There's potential problem with this idea, however: ambiguity.

¢ Suppose we tried an encoding like this, using shorter codes for more
common letters:
E=>0, T=>1, A =>10, 0 => 11, I => 100,
o And suppose we receive the bits 100.

o Is this "TEE", "AE", or "I"? Where does one letter end and the next
begin?

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 4

Decoding Using the Unique Prefix Property

e Given a bit encoding with the unique prefix property, how do we
decode?

e Discussion in previous slide gives one solution using a dictionary to
map encodings to characters.

e For simplicity, imagine our encoded text as a string of Os and 1s (hot
a representation you'd actually use in practicel!).

e Suppose D is a dictionary from such strings of Os and 1s to charac-
ters. Then,

def decode(msg) :

"""Convert encoded message MSG into the character string it represents."""

ch = ""
result = ""
for b in msg:
ch += b
if ch in D:
result += D[ch]
ch = ""

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 6

https://goo.gl/forms/FzHSa5INKlavWIJC3

Using Trees

¢ Binary trees offer a particular way to represent the dictionary from
the last slide.

Letter | Encoding
00
01
100
101
1100
1101

TMO QO ®>

o Left branches tell what to do when looking at a O bit; right branches
do the same for 1 bits (result is called a Patricia tree.

¢ To decode, e.g., 1101001011100,
- Following bits 1101 (right, right, left, right) takes us to leaf 'F'.
- Returning to the top, 00 takes us to 'A’.
- Again from the top, 101 takes us fo 'D".
- Finally, 1100 gives 'E'. Complete decoding: "FADE".

Last modified: Fri Mar 10 17:54:45 2017 €S198: Extra Lecture #4 7

A Problem

¢ How, then, do we get an encoding that
- Minimizes the size of a text, and

- Satisfies the unique prefix property (so that it can be decoded
unambiguously.)

e There is no universal encoding that does this for any text.

e We'd like an algorithn that finds a custom-made optimal encoding
for any particular text.

¢ Idea is to encode more common charcters in fewer bits.

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 8

Huffman Coding

¢ Huffman coding is named after an MIT student who invented this
encoding in response to a class assignment.

¢ Given an alphabet of symbols to be encoded, with their relative fre-
quencies in a text, it produces the optimal variable-width unique-
prefix encoding, assuming that we encode individual characters in-
dependently.

¢ Basic idea is to accumulate trees representing subsets of charac-
ters from the bottom up, starting with trivial trees each containing
a single character.

» Each time two trees are clustered into one under a new parent node,
it represents an additional bit in the coding, so it is best to prefer
clustering trees that represent characters with smallest frequency.

Last modified: Fri Mar 10 17:54:45 2017 €S198: ExtraLecture #4 9

Forming Subtrees

¢ Starting with

@ & & @ 0

e We combine the two nodes with the smallest frequencies to get a
"bigger"” node representing both the characters E and F:

(B @ @ & @
& €

o Keeping the resulting trees in order by frequency, repeat:

AN ONN TN T
(7a) @)
&) @

Last modified: Fri Mar 10 17:54:45 2017 €S198: ExtraLecture #4 11

Example

¢ Want to encode string "AAAAAAAAAABBBBBCCCCCCCDDDDDDDDDEEEF”

e Here, the frequencies are
Letter | Count

A 10
B 5
c 7
D 9
E 3
F 1
¢ Represent as 6 one-node trees labeled with letters and their fre-
quencies:
Last modified: Fri Mar 10 17:54:45 2017 €S198: ExtraLecture #4 10
Forming Subtrees (II)
¢ And again:

&9 (19

Last modified: Fri Mar 10 17:54:45 2017 €S198: Extra Lecture #4 12

Forming Subtrees (IIT) Forming Subtrees (IV)

¢ And yet again: o Finally, we get the tree on the left, which corresponds to the en-

ding table on the right
e @ co
e (15 b e
(74) @3
&y @3

Letter | Encoding
1
011

00

10

0101
0100

TMO QO ®w>

e So string "AAAAAAAAAABBBBBCCCCCCCDDDDDDDDDEEEF” encodes as
=:HHH:HH»pHHH:H:HOHHOHHOHHOEOHHoooooooooooooo»oHOHO»oHo»oHoHo»oo»oHoﬁoHoHo»oHoo:
which is 84 bits as opposed to 94 with our previous unique-prefix en-
coding from slide 6, and 280 using UTF-8 and Unicode.

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 13 Last modified: Fri Mar 10 17:54:45 2017 €S198: ExtraLecture #4 14

	Sign In
	Lecture #4: Simple Compression: Huffman Trees
	More Efficient Encoding
	Still More Efficient
	Unique Prefix Property
	Decoding Using the Unique Prefix Property
	Using Trees
	A Problem
	Huffman Coding
	Example
	Forming Subtrees
	Forming Subtrees (II)
	Forming Subtrees (III)
	Forming Subtrees (IV)

