
Sign In
� Website: https://goo.gl/forms/FzHSa5INKlavWIJC3

� Enter the word of the day in the appropriate slot.

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 1

https://goo.gl/forms/FzHSa5INKlavWIJC3


Lecture #4: Simple Compression: Huffman Trees
� Strings are composed of characters, which (like everything else in a

computer) are represented as bit strings.

� The relationship between characters and their bit representations
(encodings or code points) is arbitrary. Standardization is neces-
sary to prevent chaos.

� Python now uses an international standard known as Unicode, which
encodes (as of Version 9.0) 128,237 characters, using code points
that range from 0–1,114,111.

� These cover 135 scripts (roughly, alphabets), and various sets of
symbols: punctuation, control characters (like tab or newline), math-
ematical symbols, etc.

� A few examples:

Literal Glyph Encoding Glyph Encoding Glyph
"\u0041" A "\u00A7" § "\u0398" Θ

"\u0061" a "\u00A9" © "\u2663" ♣

"\u0030" 0 "\u00E9" é "\u2639" /

"\u0040" @ "\u05D0" ℵ

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 2



More Efficient Encoding
� If every character in a text is represented by an integer value in

the full range, we’d have 3 bytes (24 bits) per character.

� So usually, the code points themselves are encoded.

� One common encoding, UTF-8, uses 1–4 bytes per character, de-
pending on the number of significant bits in the code point.

Bits Range of Byte 1 Byte 2 Byte 3 Byte 4
Coded code points

7 0x0000 .. 0x007F 0xxxxxxx

11 0x0080 .. 0x07FF 110xxxxx 10xxxxxx

16 0x0800 .. 0xFFFF 1110xxxx 10xxxxxx 10xxxxxx

21 0x10000 .. 0x10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

� x’s mark places containing the bits of the code points. The other
bits flag how many bytes are needed.

� Where one-byte characters are common, this saves space.

� One clever feature is that bytes 2–4 (continuation bytes) all start
with a distinctive pattern (10), so that if one starts at any byte in
an array of bytes, one can find the beginning of the character.

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 3



Still More Efficient
� We can, however, do better still by using other variable-length en-

codings that can use less than a byte per character.

� There’s potential problem with this idea, however: ambiguity.

� Suppose we tried an encoding like this, using shorter codes for more
common letters:

E => 0, T => 1, A => 10, O => 11, I => 100, ...

� And suppose we receive the bits 100.

� Is this “TEE”, “AE”, or “I”? Where does one letter end and the next
begin?

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 4



Unique Prefix Property
� This ambiguity problem can be solved by choosing a code with the

Unique Prefix Property: The bit encoding for any character is
never a prefix of the encoding of any other character.

� For example, the encoding

E => 0, T => 10, A => 1101, O => 1100, I => 1110, ...

has this property (at least for the characters shown). No encodings
appears at the beginning of any other.

� E.g., “TEE” encodes to 1000, “AE” to 11010, and ‘I’ to 1110.

� There is never any ambiguity about where a character begins, if one
works from the left.

� Starting from a given bit position, p, as soon as one collects bits that
match the encoding of character C, we know that C has to be the
character that starts at p, since adding more bits can never match
another character.

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 5



Decoding Using the Unique Prefix Property
� Given a bit encoding with the unique prefix property, how do we

decode?

� Discussion in previous slide gives one solution using a dictionary to
map encodings to characters.

� For simplicity, imagine our encoded text as a string of 0s and 1s (not
a representation you’d actually use in practice!).

� Suppose D is a dictionary from such strings of 0s and 1s to charac-
ters. Then,

def decode(msg):

"""Convert encoded message MSG into the character string it represents."""

ch = ""

result = ""

for b in msg:

ch += b

if ch in D:

result += D[ch]

ch = ""

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 6



Using Trees
� Binary trees offer a particular way to represent the dictionary from

the last slide.

Letter Encoding
A 00
B 01
C 100
D 101
E 1100
F 1101

A B

C D

E F

� Left branches tell what to do when looking at a 0 bit; right branches
do the same for 1 bits (result is called a Patricia tree.

� To decode, e.g., 1101001011100,

– Following bits 1101 (right, right, left, right) takes us to leaf ‘F’.

– Returning to the top, 00 takes us to ‘A’.

– Again from the top, 101 takes us to ’D’.

– Finally, 1100 gives ‘E’. Complete decoding: “FADE”.

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 7



A Problem
� How, then, do we get an encoding that

– Minimizes the size of a text, and

– Satisfies the unique prefix property (so that it can be decoded
unambiguously.)

� There is no universal encoding that does this for any text.

� We’d like an algorithn that finds a custom-made optimal encoding
for any particular text.

� Idea is to encode more common charcters in fewer bits.

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 8



Huffman Coding
� Huffman coding is named after an MIT student who invented this

encoding in response to a class assignment.

� Given an alphabet of symbols to be encoded, with their relative fre-
quencies in a text, it produces the optimal variable-width unique-
prefix encoding, assuming that we encode individual characters in-
dependently.

� Basic idea is to accumulate trees representing subsets of charac-
ters from the bottom up, starting with trivial trees each containing
a single character.

� Each time two trees are clustered into one under a new parent node,
it represents an additional bit in the coding, so it is best to prefer
clustering trees that represent characters with smallest frequency.

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 9



Example
� Want to encode string “AAAAAAAAAABBBBBCCCCCCCDDDDDDDDDEEEF”

� Here, the frequencies are

Letter Count
A 10
B 5
C 7
D 9
E 3
F 1

� Represent as 6 one-node trees labeled with letters and their fre-
quencies:

F/1 E/3 B/5 C/7 D/9 A/10

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 10



Forming Subtrees
� Starting with

F/1 E/3 B/5 C/7 D/9 A/10

� We combine the two nodes with the smallest frequencies to get a
“bigger” node representing both the characters E and F:

/4

F/1 E/3

B/5 C/7 D/9 A/10

� Keeping the resulting trees in order by frequency, repeat:

C/7 /9

/4

F/1 E/3

B/5

D/9 A/10

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 11



Forming Subtrees (II)
� And again:

D/9 A/10 /16

C/7 /9

/4

F/1 E/3

B/5

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 12



Forming Subtrees (III)
� And yet again:

/16

C/7 /9

/4

F/1 E/3

B/5

/19

D/9 A/10

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 13



Forming Subtrees (IV)
� Finally, we get the tree on the left, which corresponds to the en-

coding table on the right

/35

/16

C/7 /9

/4

F/1 E/3

B/5

/19

D/9 A/10

Letter Encoding
A 11
B 011
C 00
D 10
E 0101
F 0100

� So string “AAAAAAAAAABBBBBCCCCCCCDDDDDDDDDEEEF” encodes as
“11111111111111111111011011011011011000000000000001010101010101010100101010101010100”
which is 84 bits as opposed to 94 with our previous unique-prefix en-
coding from slide 6, and 280 using UTF-8 and Unicode.

Last modified: Fri Mar 10 17:54:45 2017 CS198: Extra Lecture #4 14


	Sign In
	Lecture #4: Simple Compression: Huffman Trees
	More Efficient Encoding
	Still More Efficient
	Unique Prefix Property
	Decoding Using the Unique Prefix Property
	Using Trees
	A Problem
	Huffman Coding
	Example
	Forming Subtrees
	Forming Subtrees (II)
	Forming Subtrees (III)
	Forming Subtrees (IV)

