Sign In

- Website: https://goo.gl/forms/FzHSa5INKlavWIJC3
- Enter the word of the day in the appropriate slot.

Lecture #4: Simple Compression: Huffman Trees

- Strings are composed of characters, which (like everything else in a computer) are represented as bit strings.
- The relationship between characters and their bit representations (encodings or code points) is arbitrary. Standardization is necessary to prevent chaos.
- Python now uses an international standard known as *Unicode*, which encodes (as of Version 9.0) 128,237 characters, using code points that range from 0-1,114,111.
- These cover 135 scripts (roughly, alphabets), and various sets of symbols: punctuation, control characters (like tab or newline), mathematical symbols, etc.
- A few examples:

Literal	Glyph	Encoding	Glyph	Encoding	Glyph
"\u0041"	Α	"\u00A7"	8	"\u0398"	Θ
"\u0061"	a	"\u00A9"	(C)	"\u2663"	*
"\u0030"	0	"\u00E9"	é	"\u2639"	©
"\u0040"	@	"\u05D0"	×		

More Efficient Encoding

- If every character in a text is represented by an integer value in the full range, we'd have 3 bytes (24 bits) per character.
- So usually, the code points themselves are encoded.
- One common encoding, UTF-8, uses 1-4 bytes per character, depending on the number of significant bits in the code point.

Bits	Range of	Byte 1	Byte 2	Byte 3	Byte 4
Coded	code points				
7	0x0000 0x007F	0xxxxxxx			
11	0x0080 0x07FF	110xxxxx	10xxxxxx		
16	0x0800 0xFFFF	1110xxxx	10xxxxxx	10xxxxxx	
21	0x10000 0x10FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

- x's mark places containing the bits of the code points. The other bits flag how many bytes are needed.
- Where one-byte characters are common, this saves space.
- One clever feature is that bytes 2-4 (continuation bytes) all start with a distinctive pattern (10), so that if one starts at any byte in an array of bytes, one can find the beginning of the character.

Still More Efficient

- We can, however, do better still by using other variable-length encodings that can use less than a byte per character.
- There's potential problem with this idea, however: ambiguity.
- Suppose we tried an encoding like this, using shorter codes for more common letters:

```
E \Rightarrow 0, T \Rightarrow 1, A \Rightarrow 10, 0 \Rightarrow 11, I \Rightarrow 100, ...
```

- And suppose we receive the bits 100.
- Is this "TEE", "AE", or "I"? Where does one letter end and the next begin?

Unique Prefix Property

- This ambiguity problem can be solved by choosing a code with the Unique Prefix Property: The bit encoding for any character is never a prefix of the encoding of any other character.
- For example, the encoding

```
E \Rightarrow 0, T \Rightarrow 10, A \Rightarrow 1101, 0 \Rightarrow 1100, I \Rightarrow 1110, ...
```

has this property (at least for the characters shown). No encodings appears at the beginning of any other.

- E.g., "TEE" encodes to 1000, "AE" to 11010, and 'I' to 1110.
- There is never any ambiguity about where a character begins, if one works from the left.
- ullet Starting from a given bit position, p, as soon as one collects bits that match the encoding of character C, we know that C has to be the character that starts at p, since adding more bits can never match another character.

Decoding Using the Unique Prefix Property

- Given a bit encoding with the unique prefix property, how do we decode?
- Discussion in previous slide gives one solution using a dictionary to map encodings to characters.
- For simplicity, imagine our encoded text as a string of 0s and 1s (not a representation you'd actually use in practice!).
- ullet Suppose D is a dictionary from such strings of 0s and 1s to characters. Then,

```
def decode(msg):
"""Convert encoded message MSG into the character string it represents."""
ch = ""
result = ""
for b in msg:
    ch += b
    if ch in D:
        result += D[ch]
        ch = ""
```

Using Trees

 Binary trees offer a particular way to represent the dictionary from the last slide.

Letter	Encoding
Α	00
В	01
С	100
D	101
E	1100
F	1101



- Left branches tell what to do when looking at a 0 bit; right branches do the same for 1 bits (result is called a Patricia tree.
- To decode, e.g., 1101001011100,
 - Following bits 1101 (right, right, left, right) takes us to leaf 'F'.
 - Returning to the top, 00 takes us to 'A'.
 - Again from the top, 101 takes us to 'D'.
 - Finally, 1100 gives 'E'. Complete decoding: "FADE".

A Problem

- How, then, do we get an encoding that
 - Minimizes the size of a text, and
 - Satisfies the unique prefix property (so that it can be decoded unambiguously.)
- There is no universal encoding that does this for any text.
- We'd like an algorithm that finds a custom-made optimal encoding for any particular text.
- Idea is to encode more common charcters in fewer bits.

Huffman Coding

- Huffman coding is named after an MIT student who invented this encoding in response to a class assignment.
- Given an alphabet of symbols to be encoded, with their relative frequencies in a text, it produces the optimal variable-width uniqueprefix encoding, assuming that we encode individual characters independently.
- Basic idea is to accumulate trees representing subsets of characters from the bottom up, starting with trivial trees each containing a single character.
- Each time two trees are clustered into one under a new parent node, it represents an additional bit in the coding, so it is best to prefer clustering trees that represent characters with smallest frequency.

Example

- Want to encode string "AAAAAAAAABBBBBCCCCCCCDDDDDDDDEEEF"
- Here, the frequencies are

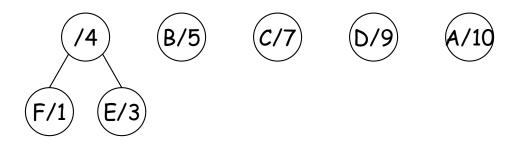
Letter	Count
Α	10
В	5
C	7
D	9
E	3
F	1

• Represent as 6 one-node trees labeled with letters and their frequencies:

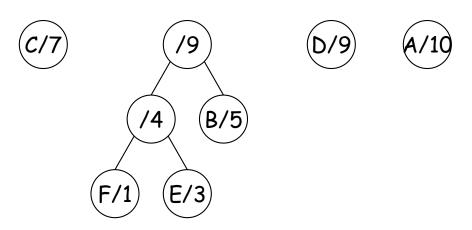
Forming Subtrees

Starting with

 We combine the two nodes with the smallest frequencies to get a "bigger" node representing both the characters E and F:

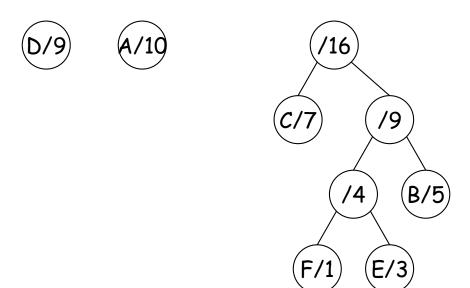


Keeping the resulting trees in order by frequency, repeat:



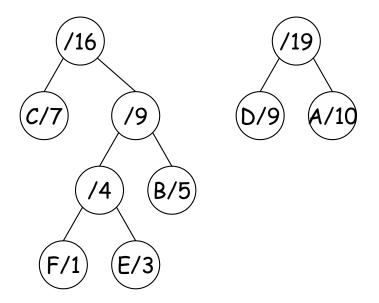
Forming Subtrees (II)

• And again:



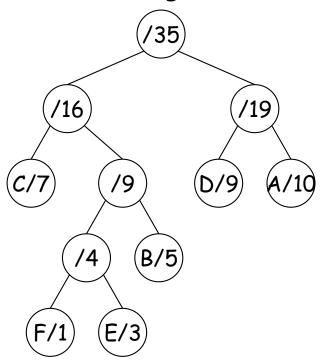
Forming Subtrees (III)

• And yet again:



Forming Subtrees (IV)

 Finally, we get the tree on the left, which corresponds to the encoding table on the right



Letter	Encoding
Α	11
В	011
C	00
D	10
E	0101
F	0100

• So string "AAAAAAAAAABBBBBCCCCCCCDDDDDDDDDEEEF" encodes as which is 84 bits as opposed to 94 with our previous unique-prefix encoding from slide 6, and 280 using UTF-8 and Unicode.