
Lecture #3: Lambda Calculus

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 1



Simplifying Python

• Python is full of features. Most are there to make programming
concise and clear. Some are there for speed.

• But if we can put up with some hardship, the same computations can
be carried out with much less.

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 2



Removing Assignment to Variables (I)

def dist(x1, y1, x2, y2):

dx = x1 - x2

dy = y1 - y2

return sqrt(dx * dx + dy * dy)

print(dist(3, 4, 9, 10))

Can be rewritten as
(lambda dist:

print(dist(3, 4, 9, 10)))\

(lambda x1, y1, x2, y2: \

(lambda dx, dy: sqrt(dx*dx + dy*dy))(x1-x2, y1-y2))

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 3



What About Recursion?

• In Python, we write

def fact(n):

return 1 if n == 0 else n * fact(n-1)

becomes

fact = lambda n: 1 if n == 0 else n * fact(n-1)

but this is an assignment.

• The trick is to contrive to “feed fact into itself” by means of lambda.

• Start with

lambda fact: lambda n: 1 if n == 0 else n * fact(n-1)

• But fact is a parameter here (no value yet given). How can we feed
it into itself?

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 4



Recursion (II)

• We have the function value

lambda fact: lambda n: 1 if n == 0 else n * fact(n-1)

and want the result of substituting this same function to fact in the
body. How?

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 5



Recursion (II)

• We have the function value

lambda fact: lambda n: 1 if n == 0 else n * fact(n-1)

and want the result of substituting this same function to fact in the
body. How?

• Another lambda!

>>> (lambda f: f(f))(lambda fact: lambda n: 1 if n == 0 else n * fact(fact)(n-1))(

24

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 6



Loops

• We’ve seen examples in class of getting rid of loops.

def fib(n):

if n == 0: return 0

f0, f1 = 0, 1

while n > 1:

f0, f1, n = f1, f0 + f1, n-1

return f1

• Rewrite as a recursive function with no loop:

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 7



Loops

• We’ve seen examples in class of getting rid of loops.

def fib(n):

if n == 0: return 0

f0, f1 = 0, 1

while n > 1:

f0, f1, n = f1, f0 + f1, n-1

return f1

• Rewrite as a recursive function with no loop:

def fib(n):

def loop(f0, f1, n):

if n > 1:

return loop(f1, f0+f1, n-1)

else:

return f1

if n == 0: return 0

return loop(0, 1, n)

• And we’ve already seen how to turn all of this into a lambda!

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 8



Multiple Arguments

• In lab 2, you saw that only one argument to a function is all you need.

(lambda x, y: something(y, x))(a, b)

# Can be written

(lambda x: lambda y: something(y, x))(a)(b)

• This rewrite is called currying, after Haskell Curry (who didn’t in-
vent it).

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 9



Getting Rid of Integers?! Church Numerals

• Alonzo Church was a famous logician and mathematician, responsi-
ble for, among other things, the lambda calculus (coming) and the
Church-Turing Thesis.

• The Church-Turing thesis is that any function on the natural num-
bers that is computable by some algorithm is computable using a
Turing Machine.

• The lambda calculus is a pure calculus of functions, without numbers,
strings, booleans, conditionals, etc.

• Yet it can represent the non-negative integers, using an encoding
known as Church numerals.

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 10



The Representation

• We define (or if you prefer, encode) zero and the successor (+1)
operator as follows:

zero = lambda f: lambda x: x

successor = lambda n: lambda f: lambda x: f(n(f)(x))

• So 1 is successor(zero) and 2 is successor(successor(zero)).

• What is 1 (as a function that does not use successor)?

• What is 2 (as a function that does not use successor)?

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 11



Operations

• How does one turn a Church numeral into the integer it represents?

• How does one implement addition?

def add church(a, b):

return

• Multiplication?

def mul church(a, b):

return

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 12



Answers

• The Church numeral representing the natural number n is a function
that takes two parameters, say f and x, and returns the result of
applying f to x n times.

• So:
def add church(a, b):

return a(successor)(b)

# or

return a(lambda n: lambda f: lambda x: f(n(f)(x)))(b)

• Currying this and using lambda notation gives

add church = lambda a: lambda b: a(lambda n: lambda f: lambda x: f(n(f)(x)))(b)

• Which allows us to define multiplication:

def mul church(a, b):

return a(add church(b))(zero)

# or in curried form:

def mul church = lambda a: lambda b: a(add church(b))(zero)

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 13



A Radical Purification: The Pure (Untyped) Lambda
Calculus

• The discussion so far suggests that we can get rid of a lot of Python,
rewriting it into a small number of constructs.

• Taken to the extreme, we get something called the lambda calcu-
lus, a model of computation developed by Church to answer various
questions about the foundations of computation.

• Consider a language in which there are only the following terms:

– Symbols: x, y, etc. These are not necessarily identifiers (of
parameters, etc.), athough they often act as such.

– Applications: (E1 E2) where E1 and E2 are terms.

– Abstractions (lambda terms): (λx. E), where x is a symbol and
E is a term.

• Because all our lambda terms have single arguments, we generally
abbreviate (((A B) C) D), for example, as A B C D.

• Likewise, we leave off the parenteses around lambda terms if they
are followed by another parenthesis or the end of an expression:
f (λx. E) becomes f λx. E.

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 14



The Substitution Model

• Before we had environments, there was the substitution model for
calling functions (see 61A Lecture 2).

• For example, to evaluate

(lambda x: lambda y: x*y)(2+3)(3+4)

==> (lambda x: lambda y: x*y)(5)(3+4)

==> (lambda x: lambda y: x*y)(5)(7)

==> (lambda y: 5*y)(7)

==> 5*7

==> 35

• Since we’ve gotten rid of mutable state, the substitution model now
works fine as it is.

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 15



Applicative Order Vs. Normal Order

• However, there is an essential difference between evaluation in the
pure lambda calculus and in Python.

• We’ve said in lecture that to evaluate E1(E2), we

– Evaluate E1 and E2 to get values v1 and v2.

– Then substitute v2 for the parameter of f (which must be a func-
tion) in the body of f .

– And then evaluate the resulting body.

• This is called applicative order evaluation.

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 16



Normal Order

• In the pure lambda calculus, however, we deal with terms, not values,
and instead of applicative-order calls, we instead do beta reductions
(substitutions) in what is called normal order. For a term T :

– If T is a symbol, do nothing.

– If T is a lambda term, evaluate its body.

– If T is an application (A B),

∗ If A is a lambda term, λx. C, replace T with the result of
substituting the term B for all bound instances of x in C .

∗ Otherwise, evaluate A.

∗ Otherwise (if the above changed nothing), evaluate B.

– If none of these change anything, no further evaluation is possi-
ble; we have a normal form.

• By repeating this process until we have a normal form, we have a
model of computation.

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 17



Church Numerals Revisited

• Converting to our new notation:

– ZERO is λf. λx. x

– SUCC (+1) is λn. λf. λx. f (n f x).

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 18



Getting Rid of Conditionals

• Because of the way normal-order evaluation works, we can do away
with conditional statements.

– TRUE is λx. λy. x.

– FALSE is λx. λy. y.

– IFTHENELSE is λp. λa. λb. p a b.

– AND is λp. λq. p q p.

– OR is λp. λq. p p q.

– NOT is λp. p FALSE TRUE.

– ISZERO is λn. n (λx. FALSE) TRUE.

• Because of normal-order evaluation, computations that blow up, such
as LOOP—(λx. x x)(λx. x x)—need not cause IFTHENELSE to fail.
What happens with

IFTHENELSE FALSE TRUE LOOP ?

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 19



Getting Rid of Parameters??!

• In fact, if we define a few primitive terms, we can get rid of all
other uses of parameters (all other lambda terms):

– I is λx. x.

– K is λx. λy. x.

– S is λx. λy. λz. xz(yz).

I, K, and S are called combinators.

• For example, in place of λx. λy. yx, we can write

S (K (S I)) (S (K K) I)

(Try it out, for example: converting to Python notation, try

I = lambda x: x

K = lambda x: lambda y: x

S = lambda x: lambda y: lambda z: x(z)(y(z))

(lambda x: lambda y: y(x))(-2)(abs)

# and

S(K(S(I)))(S(K(K))(I))(-2)(abs)

Last modified: Sat Mar 25 04:05:39 2017 CS198: Extra Lecture #3 20


	Lecture #3: Lambda Calculus
	Simplifying Python
	Removing Assignment to Variables (I)
	What About Recursion?
	Recursion (II)
	Loops
	Multiple Arguments
	Getting Rid of Integers?! Church Numerals
	The Representation
	Operations
	Answers
	A Radical Purification: The Pure (Untyped) Lambda Calculus
	The Substitution Model
	Applicative Order Vs. Normal Order
	Normal Order
	Church Numerals Revisited
	Getting Rid of Conditionals
	Getting Rid of Parameters??!

