
Lecture #2: Various

Last modified: Fri Mar 24 12:47:19 2017 CS198: Extra Lecture #2 1

Dice Throws

• When throwing n six-sided dice, what is the probability of getting
a score of at least k? Let’s ignore all rules except Pig Out, at least
for now.

• Relevant for the end game—when score is near 100.

• Problem 1. Fill in the following:

def throws(n):

"""A sequence of length 6N+1 in which element k is the sequence

of all sequences of N dice that score k points."""

Last modified: Fri Mar 24 12:47:19 2017 CS198: Extra Lecture #2 2

Score Probabilities

• We’ll define the random variable Sn to be the score from throwing
n dice.

• We can divide this into two pieces:

P (Sn ≥ k) = P (Sn ≥ k | no 1s) + P (Sn ≥ k | at least one 1)

• For convenience, define:

Uk = P (Sn ≥ k | at least one 1)

Bk = P (Sn ≥ k | no 1s)

• So what are they?

Last modified: Fri Mar 24 12:47:19 2017 CS198: Extra Lecture #2 3

Gaming

• Consider a game in which two players alternate add 1, 2, or 3 to a
total until the total is ≥ N for some N .

• The last player (the one who causes the total to get to N or above)
loses.

• How would you fill this in?

def forced win(score, N):

"""True if the current player, starting from a score of SCORE, can

force a win, if N is the limiting score."""

Last modified: Fri Mar 24 12:47:19 2017 CS198: Extra Lecture #2 4

Church Numerals

•• Alonzo Church was a famous logician and mathematician, responsi-
ble for, among other things, the lambda calculus (whence Python’s
lambda expressions) and the Church-Turing Thesis.

• The Church-Turing thesis is that any function on the natural num-
bers that is computable by some algorithm is computable using a
Turing Machine.

• The lambda calculus is a pure calculus of functions, without numbers,
strings, booleans, conditionals, etc.

• Yet it can represent the non-negative integers, using an encoding
known as Church numerals.

Last modified: Fri Mar 24 12:47:19 2017 CS198: Extra Lecture #2 5

The Representation

• We define zero and the successor (+1) operator as follows:

zero = lambda x: x

successor = lambda n: lambda f: lambda x: f(n(f)(x))

• So 1 is successor(zero) and 2 is successor(successor(zero)).

• What is 1 (as a function that does not use successor)?

• What is 2 (as a function that does not use successor)?

Last modified: Fri Mar 24 12:47:19 2017 CS198: Extra Lecture #2 6

Operations

• How does one turn a Church numeral into the integer it represents?

• How does one implement addition?

def add church(a, b):

return

• Multiplication?

def mul church(a, b):

return

Last modified: Fri Mar 24 12:47:19 2017 CS198: Extra Lecture #2 7

	Lecture #2: Various
	Dice Throws
	Score Probabilities
	Gaming
	Church Numerals
	The Representation
	Operations

