Lecture #1: Newton's Method and Other Functional
Hijinks

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 1

Higher-Order Functions at Work: Iterative Update

e A general strategy for solving an equation:

Guess a solution
while your guess isn’t good enough:
update your guess

e The three underlined segments are parameters to the process.

o The last two segments clearly require functions for their representation—

a predicate function (returning true/false values), and a function
from values to values.

e In code,

def iter solve(guess, done, update):

'Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result."""

Last modified: Sun Feb 19 17:45:12 2017 €S198: ExtraLecture #1 2

Recursive Versions

def iter solve(guess, done, update):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result."""
if done(guess):
return guess
else:
return iter_solve(update(guess), done, update)

or

def iter solve(guess, done, update):
def solution(guess):
if done(guess):
return guess
else:
return solution(update(guess))
return solution(guess)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 3

Adding a Safety Net

o In real life, we might want to make sure that the function doesn’t
Jjust loop forever, getting no closer to a solution.

def iter solve(guess, done, update, iteration limit=32):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result. Causes error if more than
ITERATION LIMIT applications of UPDATE are necessary."""

Last modified: Sun Feb 19 17:45:12 2017 CS198: ExtraLecture #1 5

Iterative Version

def iter solve(guess, done, update):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result."""
while not done(guess):
guess = update(guess)
return guess

Last modified: Sun Feb 19 17:45:12 2017 €S198: ExtralLecture #1 4

Adding a Safety Net: Code

o In real life, we might want to make sure that the function doesn't
Jjust loop forever, getting no closer to a solution.

def iter solve(guess, done, update, iteration limit=32):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result. Causes error if more than
ITERATION LIMIT applications of UPDATE are necessary."""

def solution(guess, iteration limit):
if done(guess):
return guess
elif iteration limit <= 0
raise ValueError("failed to converge")
else:
return solution(update(guess), iteration limit-1)
return solution(guess, iteration limit)

Last modified: Sun Feb 19 17:45:12 2017 €S198: ExtraLecture #1 6

Iterative Version

def iter solve(guess, done, update, iteration 1imit=32):
"""Return the result of repeatedly applying UPDATE,
starting at GUESS, until DONE yields a true value
when applied to the result. Causes error if more than
ITERATION LIMIT applications of UPDATE are necessary."""

while not done(guess):
if iteration limit <= 0:
raise ValueError("failed to converge'")
guess, iteration limit = update(guess), iteration limit-1
return guess

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 7

Newton's Method

o Newton's method uses the basic iterative scheme with a particular
update strategy to solve f(z) = 0:

—~

2, (current guess)

2141 (updated guess)

////////l

Last modified: Sun Feb 19 17:45:12 2017 €S198: ExtraLecture #1 8

Using Iterative Solving For Newton's Method (I)

o Newton's method takes a function, its derivative, and an initial guess,
and produces a result to some desired folerance (that is, to some
definition of “close enough”).

e Seehttp://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif
e Given a guess, x;, compute the next guess, z;,; by

o fla)
Thl = Th —
f'(xr)
def newton solve(func, deriv, start, tolerance):
"""Return x such that |FUNC(x)| < TOLERANCE, given initial
estimate START and assuming DERIV is the derivatative of FUNC."""

def close enough(x):
?

def newton update(x):
?

return iter_solve(start, close_enough, newton update)

Last modified: Sun Feb 19 17:45:12 2017 CS198: ExtraLecture #1 9

Using newton solve for /- and lg-

def square root(a):
return newton solve(lambda x: x*x - a, lambda x: 2 * x,
a/2, le-5)

def logarithm(a, base = 2):
return newton solve(lambda x: basex*x - a,
lambda x: x * basex*(x-1),
1, le-5)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 11

Using Iterative Solving for Newton's Method (II)
fl@)

Th+1 = Tk F(zr)
def newton solve(func, deriv, start, tolerance):

"""Return x such that |FUNC(x)| < TOLERANCE, given initial
estimate START and assuming DERIV is the derivatative of FUNC."""
def close enough(x):

return abs(func(x)) < tolerance
def newton update(x):

return x - func(x) / deriv(x)

return iter solve(start, close enough, newton update)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 10

Dispensing With Derivatives

e What if we just want to work with a function, without knowing its
derivative?

® Book uses an approximation:

def find root(func, start=1, tolerance=1e-5):
def approx deriv(f, delta = le-5):
return lambda x: (func(x + delta) - func(x)) / delta
return newton solve(func, approx deriv(func), start, tolerance)

e This is nice enough, but looks a little ad hoc (how did I pick delta?).
o Another alternative is the secant method.

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 12

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

The Secant Method

o Newton's method was

f(x)

f'(z)

e The secant method uses the last approximations values to get (in
effect) a replacement for the derivative:

Tp+1 = T —

Tpn = Tp — _A&ZF
T f) = frre)
e See http://en.wikipedia.org/wiki/File:Secant_method.svg

o But this is a problem for us: so far, we've only fed the update func-
tion the value of z;. each time. Here we also need z;._.

o How do we generalize to allow arbitrary extra data (hot just z;_;)?

Last modified: Sun Feb 19 17:45:12 2017 €S198: ExtraLecture #1 13

Secant Method Illustrated

flx)

T

/" secant line

/

Lh+1

(updated guess)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 14

Generalized iter_solve

def iter solve2(guess, done, update, state=None):
Return the result of repeatedly applying UPDATE,
starting at GUESS and STATE, until DONE yields a true value
when applied to the result. Besides a guess, UPDATE
also takes and returns a state value, which is also passed to
DONE. """
while not done(guess, state):
guess, state = update(guess, state)

return guess

Last modified: Sun Feb 19 17:45:12 2017 €S198: ExtraLecture #1 15

Numerical Integration

You may have encountered a method of approximately integrating func-
tions using the trapezoidal rule:

So \% f(z)dz is approximately the area under the dashed trapezoids.

Last modified: Sun Feb 19 17:45:12 2017 €S198: ExtraLecture #1 17

Using Generalized iter solve2 for the Secant Method

The secant method:
T — Tk-1
fxr) = flap)

def secant solve(func, startO, startl, tolerance):

Tpy1 = o — f(ap)

def close enough(x, state):
return abs(func(x)) < tolerance
def secant update(xk, xkl1):
return (xk - func(xk) * (xk - xk1)
/ (func(xk) - func(xkl)),
xk)
return iter_solve2(startl, close_enough, secant_update, start0)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 16

Numerical Integration Method

def integrate trapezoidal(f, low, high, step):
"""An approximation to the definite intregral of F from
LOW to HIGH, computed by adding the areas of trapezoids of
height STEP."""

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 18

http://en.wikipedia.org/wiki/File:Secant_method.svg

Numerical Integration Method

def integrate trapezoidal(f, low, high, step):

An approximation to the definite intregral of F from
LOW to HIGH, computed by adding the areas of trapezoids of
height STEP."""

area = 0
while low + step < high:
area += (f(low) + f(low + step)) * step * 0.5
low += step
Before returning, take care of the case where the final value
of low is less than high.
return area + (f(low) + f(high)) * (high - low) * 0.5

o The file e01.py has a few interesting variations on this.

Last modified: Sun Feb 19 17:45:12 2017 €S198: Extra Lecture #1

	Lecture #1: Newton's Method and Other Functional Hijinks
	Higher-Order Functions at Work: Iterative Update
	Recursive Versions
	Iterative Version
	Adding a Safety Net
	Adding a Safety Net: Code
	Iterative Version
	Newton's Method
	Using Iterative Solving For Newton's Method (I)
	Using Iterative Solving for Newton's Method (II)
	Using newton_solve for and lg
	Dispensing With Derivatives
	The Secant Method
	Secant Method Illustrated
	Generalized iter_solve
	Using Generalized iter_solve2 for the Secant Method
	Numerical Integration
	Numerical Integration Method
	Numerical Integration Method

