
Lecture #1: Newton’s Method and Other Functional
Hijinks

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 1

Higher-Order Functions at Work: Iterative Update

• A general strategy for solving an equation:

Guess a solution

while your guess isn’t good enough:

update your guess

• The three underlined segments are parameters to the process.

• The last two segments clearly require functions for their representation—
a predicate function (returning true/false values), and a function
from values to values.

• In code,

def iter solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result."""

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 2

Recursive Versions

def iter solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result."""

if done(guess):

return guess

else:

return iter solve(update(guess), done, update)

or

def iter solve(guess, done, update):

def solution(guess):

if done(guess):

return guess

else:

return solution(update(guess))

return solution(guess)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 3

Iterative Version

def iter solve(guess, done, update):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result."""

while not done(guess):

guess = update(guess)

return guess

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 4

Adding a Safety Net

• In real life, we might want to make sure that the function doesn’t
just loop forever, getting no closer to a solution.

def iter solve(guess, done, update, iteration limit=32):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. Causes error if more than

ITERATION LIMIT applications of UPDATE are necessary."""

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 5

Adding a Safety Net: Code

• In real life, we might want to make sure that the function doesn’t
just loop forever, getting no closer to a solution.

def iter solve(guess, done, update, iteration limit=32):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. Causes error if more than

ITERATION LIMIT applications of UPDATE are necessary."""

def solution(guess, iteration limit):

if done(guess):

return guess

elif iteration limit <= 0

raise ValueError("failed to converge")

else:

return solution(update(guess), iteration limit-1)

return solution(guess, iteration limit)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 6

Iterative Version

def iter solve(guess, done, update, iteration limit=32):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS, until DONE yields a true value

when applied to the result. Causes error if more than

ITERATION LIMIT applications of UPDATE are necessary."""

while not done(guess):

if iteration limit <= 0:

raise ValueError("failed to converge")

guess, iteration limit = update(guess), iteration limit-1

return guess

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 7

Newton’s Method

• Newton’s method uses the basic iterative scheme with a particular
update strategy to solve f(x) = 0:

Tangent at xk

xk (current guess) f(x)

xk+1 (updated guess)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 8

Using Iterative Solving For Newton’s Method (I)

• Newton’s method takes a function, its derivative, and an initial guess,
and produces a result to some desired tolerance (that is, to some
definition of “close enough”).

• See http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

• Given a guess, xk, compute the next guess, xk+1 by

xk+1 = xk −
f(xk)

f ′(xk)

def newton solve(func, deriv, start, tolerance):

"""Return x such that |FUNC(x)| < TOLERANCE, given initial

estimate START and assuming DERIV is the derivatative of FUNC."""

def close enough(x):

?

def newton update(x):

?

return iter solve(start, close enough, newton update)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 9

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Using Iterative Solving for Newton’s Method (II)

xk+1 = xk −
f(xk)

f ′(xk)

def newton solve(func, deriv, start, tolerance):

"""Return x such that |FUNC(x)| < TOLERANCE, given initial

estimate START and assuming DERIV is the derivatative of FUNC."""

def close enough(x):

return abs(func(x)) < tolerance

def newton update(x):

return x - func(x) / deriv(x)

return iter solve(start, close enough, newton update)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 10

Using newton solve for
√
· and lg ·

def square root(a):

return newton solve(lambda x: x*x - a, lambda x: 2 * x,

a/2, 1e-5)

def logarithm(a, base = 2):

return newton solve(lambda x: base**x - a,

lambda x: x * base**(x-1),

1, 1e-5)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 11

Dispensing With Derivatives

• What if we just want to work with a function, without knowing its
derivative?

• Book uses an approximation:

def find root(func, start=1, tolerance=1e-5):

def approx deriv(f, delta = 1e-5):

return lambda x: (func(x + delta) - func(x)) / delta

return newton solve(func, approx deriv(func), start, tolerance)

• This is nice enough, but looks a little ad hoc (how did I pick delta?).

• Another alternative is the secant method.

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 12

The Secant Method

• Newton’s method was

xk+1 = xk −
f(x)

f ′(x)

• The secant method uses the last approximations values to get (in
effect) a replacement for the derivative:

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)

• See http://en.wikipedia.org/wiki/File:Secant_method.svg

• But this is a problem for us: so far, we’ve only fed the update func-
tion the value of xk each time. Here we also need xk−1.

• How do we generalize to allow arbitrary extra data (not just xk−1)?

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 13

http://en.wikipedia.org/wiki/File:Secant_method.svg

Secant Method Illustrated

secant line

xkxk−1

f(x)

xk+1

(updated guess)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 14

Generalized iter solve

def iter solve2(guess, done, update, state=None):

"""Return the result of repeatedly applying UPDATE,

starting at GUESS and STATE, until DONE yields a true value

when applied to the result. Besides a guess, UPDATE

also takes and returns a state value, which is also passed to

DONE."""

while not done(guess, state):

guess, state = update(guess, state)

return guess

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 15

Using Generalized iter solve2 for the Secant Method

The secant method:

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)

def secant solve(func, start0, start1, tolerance):

def close enough(x, state):

return abs(func(x)) < tolerance

def secant update(xk, xk1):

return (xk - func(xk) * (xk - xk1)

/ (func(xk) - func(xk1)),

xk)

return iter solve2(start1, close enough, secant update, start0)

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 16

Numerical Integration

You may have encountered a method of approximately integrating func-
tions using the trapezoidal rule:

f(x)

So
∫
4

0
f(x)dx is approximately the area under the dashed trapezoids.

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 17

Numerical Integration Method

def integrate trapezoidal(f, low, high, step):

"""An approximation to the definite intregral of F from

LOW to HIGH, computed by adding the areas of trapezoids of

height STEP."""

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 18

Numerical Integration Method

def integrate trapezoidal(f, low, high, step):

"""An approximation to the definite intregral of F from

LOW to HIGH, computed by adding the areas of trapezoids of

height STEP."""

area = 0

while low + step < high:

area += (f(low) + f(low + step)) * step * 0.5

low += step

Before returning, take care of the case where the final value

of low is less than high.

return area + (f(low) + f(high)) * (high - low) * 0.5

• The file e01.py has a few interesting variations on this.

Last modified: Sun Feb 19 17:45:12 2017 CS198: Extra Lecture #1 19

	Lecture #1: Newton's Method and Other Functional Hijinks
	Higher-Order Functions at Work: Iterative Update
	Recursive Versions
	Iterative Version
	Adding a Safety Net
	Adding a Safety Net: Code
	Iterative Version
	Newton's Method
	Using Iterative Solving For Newton's Method (I)
	Using Iterative Solving for Newton's Method (II)
	Using newton_solve for and lg
	Dispensing With Derivatives
	The Secant Method
	Secant Method Illustrated
	Generalized iter_solve
	Using Generalized iter_solve2 for the Secant Method
	Numerical Integration
	Numerical Integration Method
	Numerical Integration Method

