
CS61A Lecture #37: Conclusion

Announcements:

• Course surveys TODAY: Bonus points for filling out the survey (HKN
is here to help). Get your code from the sheets that we will circulate
to put on your final for credit.

• Scheme Art Judging next week (watch the website). Entries will be
posted after 1 May (Monday).

• If you have regrade requests (or other grade issues), please get
them to us by next Wednesday.

• Topic review sessions next week. See website for schedule.

• Guerilla section on Scheme, tail calls, interpreters, and SQL Satur-
day 4/29, 12-3PM in 247 Cory.

• Otherwise, no standard office hours next week, except mine (which
may get rescheduled, however).

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 1



A Summary of Topics

• Programming primitives

• Derived programming structures

• Programming-language concepts, design, and implementation

• Programming “Paradigms”

• Software engineering

• Analysis

• Side excursions

• What’s Next?

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 2



Programming Primitives

• Recursion: the all-encompassing repetitive construct; recursive think-
ing

• Pairs: A universal data-structuring tool.

• Functions as data values, functions on functions

• Exceptions: Dealing with errors.

• Classes.

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 3



Derived Programming Structures

• Can build almost anything from primitives.

• Although Python also has specialized implementations of some im-
portant data structures.

• Sequences:

– Lists: traversals, searching, inserting, deleting (destructive and
non-destructive)

– Trees: traversals, binary search trees, constructing, inserting,
deleting

• Maps.

• Sequences: creating, traversing, searching,

• Iterators, generators.

• Trees: uses, traversing, and searching.

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 4



Programming-Language Concepts, Design,
Implementation

• Python was developed largely as a teaching language, and is simpler
in many ways than other “production” languages. . .

• And yet, it is a good deal more powerful (as measured by work done
per line of code) than these same languages.

• Still, as you’ve seen, there are problems, too: dynamic vs. static
discovery of errors.

• Big item: scope (what instance of what definition applies to evalu-
ation of an identifier). This is what environment diagrams are in-
tended to model.

– Alternative: dynamic scoping.

• Implementing a language [CS164]:

– Interpreters

– Trees as an intermediate language

– Relationship of run-time environment representation to scope rules.

– “Little” languages as a programming tool

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 5



Paradigms

• Functional programming: expressions, not statements; no side-effects;
use of higher-order functions.

• Data-directed and object-oriented programming

– Organize program around types of data, not functions

– Inheritance

– Interface vs. implementation

• Declarative programming:

– State goals or properties of the solution rather than procedures.

– SQL

∗ Data structures are n-ary relations in the form of tables.

∗ Can use where clauses, expressions, grouping to specify de-
sired results.

∗ Recursion used to get the effect of iterative construction.

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 6



Software Engineering

• Biggest ideas: Abstraction, separation of concerns

• Specification of a program vs. its implementation

– Syntactic spec (header) vs. semantic spec (comment).

– Example of multiple implementations for the same abstract be-
havior

• Testing: for every program, there is a test.

– In “Extreme Programming” there is a test for every module.

• Software engineering implicit in all our software courses, explicit in
CS169.

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 7



Analysis

• What we can measure when we measure speed:

– Raw time.

– Counts of selected representative operations.

– Symbolic expressions of running time.

– Looking at worst cases simplifies the problem (and is useful).

• Application of asymptotic notation (Θ(·), etc.) to summarizing sym-
bolic time measurements concisely.

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 8



Important Side Excursions

• Cryptography:

– protecting integrity, privacy, and authenticity of data.

– Symmetric (DES, Enigma) and asymmetric (public-key) methods.

• Computatbility [CS172]: Some functions cannot be computed. Prob-
lems that are “near” such functions cannot be computed quickly.

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 9



What’s Next (Course-Wise)?

• CS61B: (conventional) data structures and languages

• CS61C: computing hardware as programmers see it.

• CSC100: Data Science

• CS170, CS172, CS174: “Theory”—analysis and construction of al-
gorithms, theoretical models of computation, use of probabilistic
algorithms and analysis.

• CS161: Security

• CS162: Operating systems.

• CS164: Implementation of programming languages

• CS168: Introduction to the Internet,

• CS160, CS169: User interfaces, software engineering

• CS176: Computational Biology

• CS188, CS189: Artificial intelligence, Machine Learning

• CS184: Graphics

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 10



What’s Next (Course-Wise) (II)

• CS186: Databases

• CS191: Quantum Computing.

• CS195: Social Implications of Computing

• CS C149: Embedded Systems.

• CS 150: Digital Systems Design

• CS194: Special topics. (E.g.) computational photography and image
manipulation, cryptography, cyberwar.

• Plus graduate courses on these subjects and more.

• And please don’t forget CS199 and research projects.

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 11



There’s Also Electrical Engineering

• EE105: Microelectronic Devices and Circuits.

• EE118, EE134: Optical Engineering, Photovotalaic Devices.

• EE120: Signals and Systems.

• EE123: Digital Signal Processing.

• EE126: Probability and Random Processes.

• EE130: Integrated Circuit Devices.

• EE137A: Power Circuits.

• EE140: Linear Integrated Circuits (analog circuits, amplifiers).

• EE142: Integrated Circuits for Communication.

• EE143: Microfabrication Technology.

• EE147: Micromechanical Systems (MEMS).

• EE192: Mechatronic Design.

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 12



What’s Next (Otherwise)?

• Programming contests.

• Still more paradigms and languages: the web.

• The open-source world: Go out and build something!

• And above all: Have Fun!

Last modified: Fri Apr 28 13:19:43 2017 CS61A: Lecture #37 13


	CS61A Lecture #37: Conclusion
	A Summary of Topics
	Programming Primitives
	Derived Programming Structures 
	Programming-Language Concepts, Design, Implementation
	Paradigms
	Software Engineering
	Analysis
	Important Side Excursions
	What's Next (Course-Wise)?
	What's Next (Course-Wise) (II)
	There's Also Electrical Engineering
	What's Next (Otherwise)?

