
CS61A Lecture #36: Cryptography

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 1

Cryptography: Purposes

• Source: Ross Anderson, Security Engineering.

• Cryptography—the study of the design of ciphers—is a tool used to
help meet several goals, among them:

– Privacy: others can’t read our messages.

– Integrity: others can’t change our messages without us knowing.

– Authentication: we know whom we’re talking to.

• Some common terminology: we convert from plaintext to ciphertext
(encryption) and back (decryption).

• Although we typically think of text messages as characters, our al-
gorithms generally process streams of numbers or bits, making use
of standard encodings of characters as numbers.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 2

Substitution

• Simplest scheme is just to permute the alphabet:

 abcdefghijklmnopqrstuvwxyz

tyler duniabcfghjkmopqsvwxz

• So that

“so long and thanks for all the fish” =>
“ohtchgutygrtpnygbotdhmtycctpn tdion”

• Problem: If we intercept ciphertext for which we know the plain-
text (e.g., we know a message ends with name of the sender), we
learn part of the code.

• Even if we have only ciphertext, we can guess encoding from letter
frequencies.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 3

Stream Ciphers

• Idea: Use a different encoding for each character position. Enigma
was one example.

• Extreme case is the One-Time Pad: Receiver and sender share ran-
dom key sequence at least as long as all data sent. Each character
of the key specifies an unpredictable substitution cipher.

• Example:

Messages: attack at dawn|oops cancel that order|attack is back on

Key: vnchkjskruwisn|tjcdktjdjsahtjkdhjrizn|akjqltpotpfhsdjrsqieha...

Cipher: vfvhmtrkjtzin |gxrvjvjqlwlglqkwgxhlcd|acbqncowkoghuniee

(key of ’z’ means ’a’ 7→ ’z’, ’b’ 7→ ’ ’, ’c’ 7→ ’a’, etc.)

• Unbreakable, but requires lots of shared key information.

• Integrity problems: If I know message is “Pay to Paul N. Hilfinger
$100.00” can alter it to “Pay to Paul N. Hilfinger $999.00” [How?]

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 4

Aside: A Simple Reversible Combination

• The cipher in the last slide essentially used addition modulo alphabet
size as the way to combine plaintext with a key.

• Usually, we use a different method of combining streams: exclusive
or (xor), which is the “not equal” operations on bits, defined on indi-
vidual bits by x⊕ y = 0 if x and y are the same, else 1.
Fact: x⊕ y ⊕ x = y. So,

01100011 11010110
⊕ 10110101 ⊕ 10110101

11010110 01100011

• In Python, C, and Java, this operation is written x^y.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 5

Using Random-Number Generators

• Python provides a pseudo-random number generator (used for the
Hog project, e.g.): from an initial value, produces any number of
“random-looking” numbers.

• Consider a function that creates pseudo-random number generators
that produce bits, e.g.:

import random

def bit stream(seed):

r = random.Random(seed)

return lambda: r.getrandbits(1)

• If two sides of a conversation share the same key to use as a seed,
can create the same approximation to a one-time pad, and thus com-
municate secretly.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 6

Example

Message H e l l o , w o r l d

Message bytes (hex) 48 65 6c 6c 6f 2c 20 77 6f 72 6c 64

Random bytes 5b 49 96 1d 93 eb 6e 2d a4 1a 52 fb

Encrypted bytes 13 2c fa 71 fc c7 4e 5a cb 68 3e 9f

Encrypted message ? , ? q ? ? N Z ? h > ?

(? in place of non-ASCII)

• Advantage: key can be much shorter than total amount of data.

• Disadvantage: stream of bits isn’t really random; may be subject
to clever attack (cryptanalysis). This is especially true of standard
random number generators like Python’s.

• Was used in SSL (Secure Socket Layer) for “secure” web communi-
cations.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 7

Block Ciphers

• So far, have encoded bit-by-bit (or byte-by-byte). Another ap-
proach is to map blocks of bits at a time, allowing them to be mixed
and swapped as well as scrambled.

• Feistel Ciphers: a strategy for generating block ciphers. Break mes-
sage into 2N-bit chunks, and break each chunk into N-bit left and
right halves, BL and BR. Then, put the result through a number of
rounds:

BRBL

f1

f2

f3

etc.

– Each fi is some function mapping N-bit
blocks toN-bit blocks that is chosen by
your key.

– fi does not have to be invertible.

– Nice feature: to decrypt, run back-
wards.

– If the fi are really chosen well enough,
these are very good ciphers with
enough rounds.

• The Data Encryption Standard (DES) used this strategy with 12 rounds.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 8

Public Key Cryptography

• So far, our ciphers have been symmetric: both sides of a conversa-
tion share the same secret information (a key).

• If I haven’t contacted someone before, how can we trade secret
keys so as to use one of these methods?

• One idea is to use public keys so that everyone knows enough to
communicate with us, but not enough to listen in when others com-
municate with us..

• Here, information is asymmetric: we publish a public key that ev-
eryone can know, and keep back a private key.

• Rely on it being easy to decipher messages knowing the private key,
but impractically difficult without it.

• Unfortunately, we haven’t actually proved that any of these public-
key systems really are essentially impractical to crack, and quantum
computing (if made to work at scale) would break the most common
one.

• But for now, all is well.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 9

RSA Encryption: The Math

• Fermat’s Little Theorem: For p a prime, and 0 ≤ a < p,

ap mod p = a.

(for our purposes, mod is remainder (%).

• This generalizes to non-prime numbers as well (Euler’s Theorem). In
particular, if

– n = pq, where p and q are two (different) primes, and

– λ(n) = lcm(p− 1, q − 1) (least common multiple), and

– 0 < e < λ(n) has no common factors with λ(n), and

– d is computed by solving d · e mod λ(n) = 1, then

Then for any M < n.
(M e)d mod n = M

• So

– Encrypt M by computing c = me mod n

– Decrypt c by computing cd mod n = M .

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 10

RSA Public-Key Encrytion

• Basis for an asymmetric cipher: Alice picks p, q, and e, and computes
d.

• She publishes n (which is pq) and e, but keeps d, p, and q secret.

• Anyone can send Alice an encrypted message M by sending c =
M e mod n.

• But d is very hard to compute without knowing p and q, so only Alice
can decrypt c, using M = cd mod n.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 11

Signatures

• Suppose I receive a message, M , that supposedly comes from you.
How do I know it does?

• Using public-key methods, this is relatively easy.

• The RSA scheme works in either direction, (M e)d mod n = (Md)e mod
n = M .

• So, Alice could sign a message by encoding it with her private key.

• Bob decodes the message using Alice’s public key.

• If the result is a legitimate message, Bob can be sure only Alice
could have produced it.

• Otherwise, the decoded message will be garbage.

• In practice, we use a rather different scheme, but the underlying
idea is based on the same principle.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 12

Authentication on the Web

• When you talk to Amazon, how do you know that the exchange is
private and that it really is Amazon you are talking to? (On the
Internet, nobody knows you are a dog.)

• Certain companies (such as Verisign) issue signed certificates that
say (in effect) “Verisign certifies that Amazon has public key X .”

• Your browser comes equipped with Verisign’s public key so you can
verify their signature.

• At that point, you know how to talk to Amazon in a way that only
they can understand.

• (As usual, the actual protocol is rather more complex.)

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 13

Special Effects: Playing Cards Over the Phone?

• How do I play a card game over the phone, so that neither side can
(undetectably) cheat?

• To keep it simple, assume we have a two-person game between Alice
and Bob where all cards get revealed.

• For each game, let each side choose a secret encryption key, and
assume an algorithm that is commutative: if a message is encrypted
by secret key A and then by key B, it can be decrypted by the two
keys in either order.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 14

Playing Cards Over the Phone: Method

• Alice shuffles and encrypts a deck of cards, and sends them to Bob.

• Bob encrypts the encrypted cards, shuffles them, and sends them
back to Alice (doubly encrypted).

• Alice deals cards to Bob by selecting and decrypting them, and send-
ing them to Bob, who can decrypt them.

• Alice deals cards to herself by sending them to Bob, having him
decrypt them and send them (now singly encrypted) back to Alice.

• At the end of the game, all information can be revealed, and both
sides can check for consistency.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 15

Extra: Zero-Knowledge Proofs

• Zero-Knowledge Proofs involve another kind of keeping information
hidden even as one communicates certain characteristics of it.

• Suppose I possess the answer to a puzzle, and want to convince you
that I have the answer without revealing anything about what it is.

• This is an example of a zero-knowledge proof (Abadi, Goldwasser,
and Rackoff).

• Many uses, such as authentication (I want to prove who I am), or
enforcing honesty while maintaining privacy.

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 16

Illustration

Example (from Jean-Jacques Quisquater via Wikipedia): Peggy wishes
to prove to Victor that she knows the password to get through the
hidden door.

1. Peggy chooses to go left or right at random,
without Victor seeing.

2. Victor then shouts out which side he wants her
to come out.

3. Peggy uses her knowledge or not as necessary
to emerge from the desired side.

• After several rounds, Victor is convinced that
Peggy knows the password, but doesn’t know it
himself.

• An observer doesn’t know if Peggy and Victor
are colluding, and so does not even learn that
Peggy knows the password.

Image sources: CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=313643;

https://commons.wikimedia.org/w/index.php?curid=313645; https://commons.wikimedia.org/w/index.php?curid=313648

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 17

Illustration

• Example: Prove that I know how to 3-color a graph.

• Given a graph (a network of nodes connected by edges) a 3-coloring
is an assignment of colors to nodes (from a palette of three) such
that no nodes joined by an edge have the same color.

• Don’t always exist, and hard to find when they do.

• Can I prove to you that I know how to color a particular large graph
without letting you know how?

• Strategy: I randomly recolor the graph by substituting colors in my
solution (e.g., red becomes green, green becomes blue, blue becomes
red), and hide the coloring from you. You select an edge at random,
and look at the colors of the nodes at the ends of the edge.

• If I indeed know the solution, the two nodes will always be the same
color; otherwise, is a chance you’ll pick an edge where the nodes are
the same color. Repeating the procedure as many times as you want
reveals nothing about my full color scheme, but eventually convinces
you that I know a solution.

• Demo: http://web.mit.edu/~ezyang/Public/graph/svg.html

Last modified: Wed Apr 26 18:43:04 2017 CS61A: Lecture #36 18

http://web.mit.edu/~ezyang/Public/graph/svg.html

	CS61A Lecture #36: Cryptography
	Cryptography: Purposes
	Substitution
	Stream Ciphers
	Aside: A Simple Reversible Combination
	Using Random-Number Generators
	Example
	Block Ciphers
	Public Key Cryptography
	RSA Encryption: The Math
	RSA Public-Key Encrytion
	Signatures
	Authentication on the Web
	Special Effects: Playing Cards Over the Phone?
	Playing Cards Over the Phone: Method
	Extra: Zero-Knowledge Proofs
	Illustration
	Illustration

