Lecture 34: Distributed Computing: Data

e The Unix operating system provides a simple model for accessing
data.

o The basic abstraction is a stream of bytes (which most often trans-
lates to a stream of text).

e At the programmer level, have simple operations: read and write
sequences of bytes.

e On top of this is built the reading of clusters of bytes (numerals,
lines, words separated by whitespace, etc.)

o Programs typically have a standard input, standard output, and stan-
dard error: three streams.

e Hence, programs can be fitted together into series of programs—
pipelines:

“We should have some ways of coupling programs like [a]
garden hose—screw in another segment when it becomes
necessary to massage data in another way."

-Douglas McIlroy [1964].

Last modified: Mon Apr 24 13:48:18 2017 CS61A: Lecture #35 1

Pipeline Example

o Example (from Lecture 9): Twenty most common words in a manuscript:
tr -c¢ -s ’[:alpha:]’ ’[\nx]’ < FILE | \
sort | \
uniq -c¢ | \
sort -n -r -k 1,1 | \
sed 20q

e This example shows only limited opportunities for parallelism (sort-
ing is a bottleneck).

o In general there may be more, but generally limited to number of
segments in the pipeline.

Last modified: Mon Apr 24 13:48:18 2017 CS61A: Lecture #35 2

Big Data

e So what happens with huge amounts of data?
o Examples (from Anthony Joseph, although a bit dated):
- Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)
- 1,000 genomes project: 200 Terabytes
- Google web index: 10+ Petabytes (10,000,000 Gigabytes)
- Disk speeds: order of 100MBytes/sec, maybe a few times that
for SSDs (solid-state disks).

e Bottom line: need to break up—distribute—data and attach compu-
tation to each chunk.

Last modified: Mon Apr 24 13:48:18 2017 CS61A: Lecture #35 3

Map-Reduce

o One type of such distributed computation, developed at Google, was
generically called map-reduce.

® Google has since moved on to other fechniques, but map-reduce
is still interesting, and suitable for implementation on the Spark
framework.

e Basic idea of a map-reduce application:

- Map data into key-value pairs. This operation is distributed over
many segments of data and processors, each of results in a set
of such pairs.

- Shuffle the pairs so that those with matching keys are grouped
together.

- Reduce (accumulate) the values for each key, producing as a final
product a mapping from keys to collected values. Each individual
reduction can proceed independently of others.

o By plugging in appropriate mapping and reduction functions, can get
a large variety of overall functions.

Last modified: Mon Apr 24 13:48:18 2017 CS61A: Lecture #35 5

Apache Spark

e The Apache Spark framework (first developed here) attempts to
provide a simple view of large datasets, permitting intuitive and
flexible constructions analogous to Unix pipelines.

e A Resilient Distributed Dataset (RDD) is a collection of values or
key-value pairs (as in a Python dictionary).

e Provides a variety of familiar operations on them:
- Unix-like: sort, count, distinct (uniq), pipe.
- SQL-like: union, intersection, join (multiple tables).
- General sequence operations: map, filter, reduce (accumulate).

e Provides for partitioning of data across machines, allowing opera-
tions to be implemented in parallel.

e Adds fault tolerance, load redistribution, and monitoring.

Last modified: Mon Apr 24 13:48:18 2017 CS61A: Lecture #35 4



	Lecture 34: Distributed Computing: Data
	Pipeline Example
	Big Data
	Apache Spark
	Map-Reduce

