
Lecture 34: Distributed Computing: Data

• The Unix operating system provides a simple model for accessing
data.

• The basic abstraction is a stream of bytes (which most often trans-
lates to a stream of text).

• At the programmer level, have simple operations: read and write
sequences of bytes.

• On top of this is built the reading of clusters of bytes (numerals,
lines, words separated by whitespace, etc.)

• Programs typically have a standard input, standard output, and stan-
dard error: three streams.

• Hence, programs can be fitted together into series of programs—
pipelines:

“We should have some ways of coupling programs like [a]
garden hose—screw in another segment when it becomes
necessary to massage data in another way.”
–Douglas McIlroy [1964].

Last modified: Mon Apr 24 13:48:18 2017 CS61A: Lecture #35 1



Pipeline Example

• Example (from Lecture 9): Twenty most common words in a manuscript:

tr -c -s ’[:alpha:]’ ’[\n*]’ < FILE | \

sort | \

uniq -c | \

sort -n -r -k 1,1 | \

sed 20q

• This example shows only limited opportunities for parallelism (sort-
ing is a bottleneck).

• In general there may be more, but generally limited to number of
segments in the pipeline.

Last modified: Mon Apr 24 13:48:18 2017 CS61A: Lecture #35 2



Big Data

• So what happens with huge amounts of data?

• Examples (from Anthony Joseph, although a bit dated):

– Facebook’s daily logs: 60 Terabytes (60,000 Gigabytes)

– 1,000 genomes project: 200 Terabytes

– Google web index: 10+ Petabytes (10,000,000 Gigabytes)

– Disk speeds: order of 100MBytes/sec, maybe a few times that
for SSDs (solid-state disks).

• Bottom line: need to break up—distribute—data and attach compu-
tation to each chunk.

Last modified: Mon Apr 24 13:48:18 2017 CS61A: Lecture #35 3



Apache Spark

• The Apache Spark framework (first developed here) attempts to
provide a simple view of large datasets, permitting intuitive and
flexible constructions analogous to Unix pipelines.

• A Resilient Distributed Dataset (RDD) is a collection of values or
key-value pairs (as in a Python dictionary).

• Provides a variety of familiar operations on them:

– Unix-like: sort, count, distinct (uniq), pipe.

– SQL-like: union, intersection, join (multiple tables).

– General sequence operations: map, filter, reduce (accumulate).

• Provides for partitioning of data across machines, allowing opera-
tions to be implemented in parallel.

• Adds fault tolerance, load redistribution, and monitoring.

Last modified: Mon Apr 24 13:48:18 2017 CS61A: Lecture #35 4



Map-Reduce

• One type of such distributed computation, developed at Google, was
generically called map-reduce.

• Google has since moved on to other techniques, but map-reduce
is still interesting, and suitable for implementation on the Spark
framework.

• Basic idea of a map-reduce application:

– Map data into key-value pairs. This operation is distributed over
many segments of data and processors, each of results in a set
of such pairs.

– Shuffle the pairs so that those with matching keys are grouped
together.

– Reduce (accumulate) the values for each key, producing as a final
product a mapping from keys to collected values. Each individual
reduction can proceed independently of others.

• By plugging in appropriate mapping and reduction functions, can get
a large variety of overall functions.

Last modified: Mon Apr 24 13:48:18 2017 CS61A: Lecture #35 5


	Lecture 34: Distributed Computing: Data
	Pipeline Example
	Big Data
	Apache Spark
	Map-Reduce

