
Lecture 34: Distributed Computing

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 1



Definitions

• Sequential Process: Our subject matter up to now: processes that
(ultimately) proceed in a single sequence of primitive steps.

• Concurrent Processing: The logical or physical division of a process
into multiple sequential processes.

• Parallel Processing: A variety of concurrent processing character-
ized by the simultaneous execution of sequential processes.

• Distributed Processing: A variety of concurrent processing in which
the individual processes are physically separated (often using het-
erogeneous platforms) and communicate through some network struc-
ture.

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 2



Purposes

We may divide a single program into multiple programs for various rea-
sons:

• Computation Speed through operating on separate parts of a prob-
lem simultaneously, or through

• Communication Speed through putting parts of a computation near
the various data they use.

• Reliability through having mulitple physical copies of processing or
data.

• Security through separating sensitive data from untrustworthy users
or processors of data.

• Better Program Structure through decomposition of a program into
logically separate processes.

• Resource Sharing through separation of a component that can serve
mulitple users.

• Manageability through separation (and sharing) of components that
may need frequent updates or complex configuration.

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 3



Communicating Sequential Processes

• All forms of concurrent computation can be considered instances of
communicating sequential processes.

• That is, a bunch of “ordinary” programs that communicate with each
other through what is, from their point of view, input and output
operations.

• Sometimes the actual communication medium is shared memory: in-
put looks like reading a variable and output looks like writing a vari-
able. In both cases, the variable is in memory accessed by multiple
computers.

• At other times, communication can involve I/O over a network such
as the Internet.

• In principle, either underlying mechanism can be made to look like
either access to variables or explicit I/O operations to a program-
mer.

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 4



Distributed Communication

• With sequential programming, we don’t think much about the cost
of “communicating” with a variable; it happens at some fixed speed
that is (we hope) related to the processing speed of our system.

• With distributed computing, the architecture of communication be-
comes important.

• In particular, costs can become uncertain or heterogeneous:

– It may take longer for one pair of components to communicate
than for another, or

– The communication time may be unpredictable or load-dependent.

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 5



Simple Client-Server Models

server

client

client

client

client

• Example: web servers

• Good for providing a service

• Many clients, one server

• Easy server maintenance.

• Single point of failure

• Problems with scaling

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 6



Variations: on to the cloud

• Google and other providers modify this model with redundancy in
many ways.

• For example, DNS load balancing (DNS = Domain Name System) al-
lows us to specify multiple servers.

• Requests from clients go to different servers that all have copies
of relevant information.

• Put enough servers in one place, you have a server farm. Put servers
in lots of places, and we have a cloud.

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 7



Communication Protocols

• At the lowest level, computers, pads, laptops, and phones (the data
facilities, that is) are able to send out and receive arbitrary streams
of bits into some network.

• Not very useful unless there is some agreement (protocol) as to
what these bits are supposed to mean.

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 8



Protocol Layers

• In fact, we use a whole stack of protocol layers, each using the layer
below, and each providing some communication abstraction :

– The IP Protocol is provides a way to specify destinations and send
raw segments of messages to those destinations, with no guaran-
tee of delivery.

– Inconvenient to deal with this low level directly, so the TCP (Trans-
mission Control Protocol), built on top of IP, provides the abstrac-
tion of sending a complete message reliably. The software takes
care of breaking the message into segments, sending those seg-
ments (via IP), reassembling them in order on the other end, and
seeing that they have been correctly received.

– The DNS (Domain Name Service), built on IP and TCP, is a dis-
tributed database that handles conversions between human read-
able names (URLs), such as (http://cs61a.org) and IP addresses
(e.g. 104.199.121.146).

– The HyperText Transfer Protocol (HTTP), built on TCP, handles
transfer of requests and responses from web servers.

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 9



Example: HTTP

• When you click on a link, such as the syllabus:

http://cs61a.org/articles/about.html

your browser:

– Consults the DNS to find out the IP address for cs61a.org.

– Sends a message to port 80 at that address:

GET articles/about.html HTTP 1.1

– The program listening there (the web server) then responds with
HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 1354

<html> ... text of web page

• Protocol has other messages: forexample, POST is often used to
send data in forms from your browser. The data follows the POST
message and other headers.

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 10



Still Another Level Of Abstraction: Sessions

• The HTTP protocol was originally conceived as stateless: the server
to which your browser sends messages does not reliably know who
sends the messages and therefore which messages are part of the
same conversation.

• So, early on, developers created an abstraction of a conversation
(“session”) on top of HTTP.

• A message from the server can contain cookies: pieces of data that
the browser retains, and sends back to the server whenever it sends
a message to the same address.

• For example, a cookie can hold a session id, a number, created ran-
domly, that the browser sends back to the server so that the server
can use it as a key to retrieve the state of the conversation.

• Alternatively, a server can send the actual state of the conversation
to the browser and let the browser store it and send it back. (Have
to be careful, or this can be a pathway to subverting the server).

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 11



Peer-to-Peer Communication

0

1

2

3

4 5

6

7

• No central point of failure; clients talk
to each other.

• Can route around network failures.

• Computation and memory shared.

• Can grow or shrink as needed.

• Used for file-sharing applications, bot-
nets (!).

• But, deciding routes, avoiding conges-
tion, can be tricky.

• (E.g., Simple scheme, broadcasting all
communications to everyone, requires
N

2 communication resource. Not prac-
tical.

• Maintaining consistency of copies re-
quires work.

• Security issues.

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 12



Clustering

• A peer-to-peer network of “su-
pernodes,” each serving as a
server for a bunch of clients.

• Allows scaling; could be nested
to more levels.

• Examples: Skype, network time
service.

Last modified: Fri Apr 21 13:22:35 2017 CS61A: Lecture #34 13


	Lecture 34: Distributed Computing
	Definitions
	Purposes
	Communicating Sequential Processes
	Distributed Communication
	Simple Client-Server Models
	Variations: on to the cloud
	Communication Protocols
	Protocol Layers
	Example: HTTP
	Still Another Level Of Abstraction: Sessions
	Peer-to-Peer Communication
	Clustering

