
Public Service Announcement

“ATTN Latina/o Coders:
The Hispanic Heritage Foundation and the Infosys Founda-

tions USA are excited to host a LOFT Coder Summit at Stanford
University on Saturday, May 6th from 8:00 am - 5:00 pm, as hun-
dreds of Latina/o coders gather to share ideas, energy and cul-
tural pride! For more details and to register visit lcsrsvp.com.

This summit is part of HHF’s broader Code as a Second Lan-
guage (CSL) national initiative which has included LOFT Coder
Summits in Austin at SXSW, New York, Minneapolis and Stan-
ford University, The Rio Grande Valley and Los Angeles!

If you are a Latina/o coder, programmer, hacker, developer,
and/ or a computer scientist, we invite you to be a part of this
one-of-a-kind experience. The summit is a free one-day event
filled with back to back workshops, discussions, and opportuni-
ties to expand your network. Please join us in redefining the
landscape of computer technology through a heightened collab-
oration and representation of like-minded Latina/o students and
professionals, all united and ignited by their endless passion for
technology.”

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 1

lcsrsvp.com


Lecture 29: SQL Aggregation and Recursion

• Abstractly, a select statement that lists multiple tables filters all
possible combinations of rows from those tables.

> create table T1 as

select "a" as val union select "b";

> create table T2 as

select 1 as val union select 2;

> select T1.val, T2.val from T1, T2;

a|1

a|2

b|1

b|2

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 2



Comparison to Python

• This includes the case where the same table is named twice, as in
select A.val, B.val from T1 as A, T1 as B;

a|a

a|b

b|a

b|b

• Thus, the select ... from ... part is rather like the for part of
a list comprehension in Python:

[ (A.val, B.val) for A in T1 for B in T1 ]

• The where clause is now a filter, like the if clause in a list compre-
hension.

> select A.val, B.val from T1 as A, T1 as B

where A.val <= B.val;

a|a

a|b

b|b

. . . is like
[ (A.val, B.val) for A in T1 for B in T1 if A.val <= B.val ]

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 3



Expressions

• Familiar arithmetic is possible:
> select 3 + 4;

7

> select 3+GP from grade values;

7

7

6.7

6

6.3

...

• Also string operations (not quite like Python):

> select First || " " || Last from students;

Jason Knowles

Valerie Chan

...

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 4



Aggregation

• Certain expressions aggregate results:

> select avg(GP) from grades, grade values

where Letter=Grade and SID = 101;

3.25

> select max(GP) from grades, grade values

where Letter=Grade and SID = 101;

3.7

> select count(GP) from grades, grade values

where Letter=Grade and SID = 101;

4

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 5



Local Tables

• SQL provides a way to create (essentially) a temporary table for
use in one select.

• Analogous to the let expression in Scheme.

• Here, foreigner is a one-column table local to this statement.

with foreigner(person) as (

select "Martin" union

select "Christina" union

select "Johanna"

)

select child from people, foreigner

where people.parent = foreigner.person;

What does this do?

people
parent child

Martin George
Christina George
George Martin F
Johanna Martin F
George N Paul
George N Ann
George N John
Martin F George N
Martin F Robert
Martin F Donald
Donald Peter

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 6



Example: Ancestry Relationships

• What does the program on the left do?

• (distinct removes duplicate rows.)

with kin(first, second) as (

select a.child, b.child

from people as a, people as b

where a.parent = b.parent

and a.child != b.child )

select distinct kin.second, child

from people, kin

where kin.first = parent;

people
parent child

Martin George
Christina George
George Martin F
Johanna Martin F
George N Paul
George N Ann
George N John
Martin F George N
Martin F Robert
Martin F Donald
Donald Peter

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 7



Recursion, Yet Again

• As with Python, Scheme, and streams, (limited) recursion is possible
in SQL using the with clause.

• General form:
with

table_name(column_names) as (

select ... union -- Base case

select ... union -- Base case

select ... from ..., table_name, ...

)

select ...

• The recursively defined table must appear only once in the from

clause of the last select in the with clause.

• Because of these restrictions, no mutual recursions or tree recur-
sions are allowed.

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 8



Example: Integers

• Define the table ints to contain integers from 1–30:

create table ints as

with ints(n) as (

select 1 union

select n+1 from ints where n<=30

)

select n from ints;

• Here, I’ve chosen to use ints for both the local and global tables.

• Usual sort of scope rules apply: the local ints is distinct from the
global one, so I didn’t have to make up a new name.

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 9



Defining Ancestor Recursively

• An ancestor is a parent or an ancestor of a parent.

with

related(ancestor, descendant) as (

select parent, child from people union

select ancestor, child from related, people

where descendant = parent

)

select ancestor from related where descendant = "Paul";

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 10



A Famous Number

• There is a famous story about the “interesting’ number 1729, the
first of the “taxicab numbers.”

• The story told by G. H. Hardy describes a meeting between him and
Srinivasa Ramanujan:

“I remember once going to see [Ramanujan] when he was
lying ill at Putney. I had ridden in taxi-cab No. 1729, and re-
marked that the number seemed to be rather a dull one, and
that I hoped it was not an unfavourable omen. ‘No,’ he replied,
‘it is a very interesting number; it is the smallest [integer]
number expressible as the sum of two [positive] cubes in two
different ways.’ ”

• Given our table ints (numbers up to 50) how do we find such num-
bers?

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 11



Solution

with cubes(a, b, c) as (

select x.n, y.n, x.n*x.n*x.n + y.n*y.n*y.n

from ints as x, ints as y where x.n <= y.n

)

select left.a, left.b, right.a, right.b, left.c

from cubes as left, cubes as right

where left.a < right.a and left.c = right.c;

Last modified: Mon Apr 10 15:28:02 2017 CS61A: Lecture #29 12


	Public Service Announcement
	Lecture 29: SQL Aggregation and Recursion
	Comparison to Python
	Expressions
	Aggregation
	Local Tables
	Example: Ancestry Relationships
	Recursion, Yet Again
	Example: Integers
	Defining Ancestor Recursively
	A Famous Number
	Solution

