
Lecture 27: Streams and Lazy Evaluation

Some of the most interesting real-world problems in computer science
center around sequential data.

• DNA sequences.

• Web and cell-phone traffic streams.

• The social data stream.

• Series of measurements from instruments on a robot.

• Stock prices, weather patterns.

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 1

Finite to Infinite

Currently, all our sequence data structures share common limitations:

• Each item must be explicitly represented, even if all can be gener-
ated by a common formula or function

• Sequence must be complete before we start iterating over it.

• Can’t be infinite. Who cares?

– “Infinite” in practical terms means “having an unknown bound”.

– Such things are everywhere.

– Internet and cell phone traffic.

– Instrument measurement feeds, real-time data.

– Mathematical sequences.

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 2

Review: Iterators

• The Python for loop

for x in L:

BODY

can use one of two strategies:

Iterator Counter

ITER = L. iter ()

while True:

try:

x = ITER. next ()

BODY

except StopIteration:

break

I, L = 0, L

while True:

try:

x = L[I]

BODY

I += 1

except IndexError:

break

• Crucial point: Iterators don’t compute items in a sequence until they
are asked to. They are lazy (a technical term!).

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 3

Streams: Another Lazy Structure

We’ll define a Stream to look like an rlist (linked list) whose rest is
computed lazily.
class Stream(object):

"""A lazily computed recursive list."""

def init (self, first, compute rest=lambda: Stream.empty):

"""A Stream whose first element is FIRST and whose tail is

initialized from COMPUTE REST() when needed."""

self.first, self. compute rest = first, compute rest

@property

def rest(self):

"""Return the rest of the stream, computing it once."""

if self. compute rest is not None:

self. rest = self. compute rest()

self. compute rest = None

return self. rest

def repr (self):

return ’Stream({0}, <...>)’.format(repr(self.first))

empty stream = ... # Some object representing an empty stream
Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 4

Basic Stream Operations

>>> s1 = Stream(1, lambda: Stream(2))

>>> s1.first

1

>>> s1.rest.first

2

>>> s1.rest.rest

Stream.empty

>>> def print first(x): print("called"); return x

>>> s2 = Stream(1, lambda: print first(Stream(2)))

>>> s2.rest.first

called

2

>>> s2.rest.first # .rest only computed first time called

2

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 5

Examples

An infinite stream of the same value.

def make const stream(x):

"""An infinite stream of X’s."""

return Stream(x, lambda: make const stream(x))

The positive integers (all of them)

def make integer stream(first=1):

"""The infinite stream FIRST, FIRST+1, ..."""

def compute rest():

return make integer stream(first+1)

return Stream(first, compute rest)

>>> ints = make integer stream(1)

>>> ints.first

1

>>> ints.rest.first

2

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 6

Mapping Streams

Familiar operations on other sequences can be extended to streams:
def map stream(fn, s):

"""Stream of values of FN applied to the elements of stream S."""

if s is Stream.empty:

return s

def compute rest():

return map stream(fn, s.rest)

return Stream(fn(s.first), compute rest)

def add streams(s0, s1):

"""Stream of the sums of respective elements of S0 and S1."

def compute rest():

return add streams(s0.rest, s1.rest)

if s0 is Stream.empty or s1 is Stream.empty:

return Stream.empty

else:

return Stream(s0.first + s1.first, compute rest)

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 7

Filtering Streams

Another example:
def filter stream(fn, s):

"""Return a stream of the elements of S for which FN is true."""

if s is Stream.empty:

return s

def compute rest():

return filter stream(fn, s.rest)

if fn(s.first):

return Stream(s.first, compute rest)

return compute rest()

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 8

Streams to Lists

To look at streams a bit more conveniently, let’s also define:
def stream to list(s, n):

"""A list containing the elements of stream S,

up to a maximum of N."""

r = []

while n > 0 and s is not Stream.empty:

r.append(s.first)

s = s.rest

n -= 1

return r

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 9

Finding Primes

def primes(pos stream):

"""Return a stream of members of POS STREAM that are not

evenly divisible by any previous members of POS STREAM.

POS STREAM is a stream of increasing positive integers.

>>> p4 = primes(make integer stream(4))

>>> stream to list(p4, 9)

[4, 5, 6, 7, 9, 11, 13, 17, 19]

>>> p2 = primes(make integer stream(2))

>>> stream to list(p2, 9)

[2, 3, 5, 7, 11, 13, 17, 19, 23]

"""

def not divisible(x):

return x % pos stream.first != 0

def compute rest():

return primes(filter stream(not divisible, pos stream.rest))

return Stream(pos stream.first, compute rest)

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 10

Relationship of Streams to Iterators

• A stream is clearly very much like an iterator.

• The difference is that, in effect, it remembers its past values.

def iterator to stream(iterator):

"""Returns a stream containing the values returned by ITERATOR."""

??

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 11

Relationship of Streams to Iterators

• A stream is clearly very much like an iterator.

• The difference is that, in effect, it remembers its past values.

def iterator to stream(iterator):

"""Returns a stream containing the values returned by ITERATOR."""

def compute rest():

??

return compute rest()

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 12

Relationship of Streams to Iterators

• A stream is clearly very much like an iterator.

• The difference is that, in effect, it remembers its past values.

def iterator to stream(iterator):

"""Returns a stream containing the values returned by ITERATOR."""

def compute rest():

return Stream(??)

return compute rest()

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 13

Relationship of Streams to Iterators

• A stream is clearly very much like an iterator.

• The difference is that, in effect, it remembers its past values.

def iterator to stream(iterator):

"""Returns a stream containing the values returned by ITERATOR."""

def compute rest():

return Stream(next(iterator), ??)

return compute rest()

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 14

Relationship of Streams to Iterators

• A stream is clearly very much like an iterator.

• The difference is that, in effect, it remembers its past values.

def iterator to stream(iterator):

"""Returns a stream containing the values returned by ITERATOR."""

def compute rest():

return Stream(next(iterator), compute rest)

return compute rest()

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 15

Relationship of Streams to Iterators

• A stream is clearly very much like an iterator.

• The difference is that, in effect, it remembers its past values.

def iterator to stream(iterator):

"""Returns a stream containing the values returned by ITERATOR."""

def compute rest():

try:

return Stream(next(iterator), compute rest)

except StopIteration:

return empty stream

return compute rest()

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 16

Recursive Streams

• Because streams are computed lazily, in a definition such as

aStream = Stream(..., lambda: ...)

the body of the lambda can refer to aStream (because it will have
been initialized by the time the lambda function is called.)

• So what do you suppose we get from these?

c1 = Stream(1, lambda: c1)

stream to list(c1, 5)

f1 = add streams(c1, Stream(0, lambda: f1))

stream to list(f1, 5)

f2 = Stream(1,

lambda: Stream(1,

lambda: add streams(f2, f2.rest)))

stream to list(f2, 6)

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 17

Recursive Streams

• Because streams are computed lazily, in a definition such as

aStream = Stream(..., lambda: ...)

the body of the lambda can refer to aStream (because it will have
been initialized by the time the lambda function is called.)

• So what do you suppose we get from these?

c1 = Stream(1, lambda: c1)

stream to list(c1, 5)

[1, 1, 1, 1, 1]

f1 = add streams(c1, Stream(0, lambda: f1))

stream to list(f1, 5)

f2 = Stream(1,

lambda: Stream(1,

lambda: add streams(f2, f2.rest)))

stream to list(f2, 6)

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 18

Recursive Streams

• Because streams are computed lazily, in a definition such as

aStream = Stream(..., lambda: ...)

the body of the lambda can refer to aStream (because it will have
been initialized by the time the lambda function is called.)

• So what do you suppose we get from these?

c1 = Stream(1, lambda: c1)

stream to list(c1, 5)

[1, 1, 1, 1, 1]

f1 = add streams(c1, Stream(0, lambda: f1))

stream to list(f1, 5)

[1, 2, 3, 4, 5]

f2 = Stream(1,

lambda: Stream(1,

lambda: add streams(f2, f2.rest)))

stream to list(f2, 6)

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 19

Recursive Streams

• Because streams are computed lazily, in a definition such as

aStream = Stream(..., lambda: ...)

the body of the lambda can refer to aStream (because it will have
been initialized by the time the lambda function is called.)

• So what do you suppose we get from these?

c1 = Stream(1, lambda: c1)

stream to list(c1, 5)

[1, 1, 1, 1, 1]

f1 = add streams(c1, Stream(0, lambda: f1))

stream to list(f1, 5)

[1, 2, 3, 4, 5]

f2 = Stream(1,

lambda: Stream(1,

lambda: add streams(f2, f2.rest)))

stream to list(f2, 6)

[1, 1, 2, 3, 5, 8]

Last modified: Wed Apr 5 13:47:18 2017 CS61A: Lecture #27 20

	Lecture 27: Streams and Lazy Evaluation
	Finite to Infinite
	Review: Iterators
	Streams: Another Lazy Structure
	Basic Stream Operations
	Examples
	Mapping Streams
	Filtering Streams
	Streams to Lists
	Finding Primes
	Relationship of Streams to Iterators
	Recursive Streams

