
Lecture 26: Interpretating Scheme

A Scheme interpreter is essentially an extension of the calculator:

• A component known as the reader (scheme read) reads Scheme val-
ues (atoms and pairs).

• Since Scheme expressions and programs are a subset of Scheme
values, no further parsing is necessary.

• A function scheme eval evaluates Scheme expressions.

– Atoms are its base cases.

– For function calls, it uses a function scheme apply, as for the
calculator.

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 1

Reading

• The project skeleton defines a class Buffer (in buffer.py), whose
purpose is to take sequences of tokens (strings) and concatenate
them into a single sequence in which one can either look at and, if
desired, remove, one token at a time.

• These sequences of tokens come from a method tokenize lines

which breaks sequences of strings into tokens:

>>> from scheme tokens import tokenize lines

>>> from buffer import Buffer

>>> L = tokenize lines(["(define x", " (+ y 3))"])

>>> b = Buffer(L)

>>> b.current()

’(’

>>> b.remove front()

’(’

>>> b.remove front()

’define’

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 2

scheme read

• Finally, the function scheme read, which you will complete, pulls to-
kens off a Buffer until it has a complete Scheme expression:

>>> from scheme tokens import tokenize lines

>>> from buffer import Buffer

>>> from scheme reader import scheme read

>>> L = tokenize lines(["(define x", " (+ y 3))", "(define y 42)"])

>>> b = Buffer(L)

>>> scheme read(b)

Pair(’define’, Pair(’x’, Pair(Pair(’+’, Pair(’y’, Pair(3, nil))), nil)))

>>> scheme read(b)

Pair(’define’, Pair(’y’, Pair(42, nil)))

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 3

Apply

• The interpreter function scheme apply(func, args) has the ef-
fect of allowing one to construct and evaluate function calls.

• Aside: In Python, we’ve been writing func(*args) to get the effect
of apply(func,args) in ordinary programs.

• Aside: it is made available to Scheme programmers as the built-in
function apply:

(define L ’(1 2 3))

(apply + L) ===> (+ 1 2 3) ===> 6)

• scheme apply itself has two cases:

– Either func is a primitive, built-in function, in which case, its code
is part of the interpreter, or

– func is a user-defined function, in which case its code is stored
in it as a Scheme expression, and is evaluated by eval.

• So there is a “recursive dance” back and forth between eval, and
apply.

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 4

Evaluation for Scheme

• Simple expressions are evaluated as for the calculator.

• A Scheme expression consisting of a number simply evaluates to
that number. It is self-evaluating.

• A function call (E0 E1 · · · En) is evaluated by recursively evaluating
the Ei and then using scheme apply.

• But Scheme has a number of other cases to handle.

• Aside: As for scheme apply, the evaluation function for Scheme
is also available to Scheme programmers, in the form of a function
eval.

• E.g., (eval (list + 1 2)) and (eval ’(+ 1 2)) produce 3.

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 5

Evaluation of Symbols

• In Scheme expressions, most symbols represent identifiers, which
we did not encounter in the calculator.

• Obviously, we need more information to evaluate a symbol than just
the symbol itself.

• Fortunately, we already know what’s needed: an environment.

• Thus, to evaluate a Scheme expression, we will need both the ex-
pression itself and the environment in which to evaluate it.

• As it happens, exactly the same kind of structure as in Python—
environment frames linked by parent pointers—is what we need to
interpret Scheme.

• This is because Scheme uses nearly the same scope rules as Python
does.

• Earlier dialects of Lisp, however, used a different kind of scope
rule.

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 6

Static and Dynamic Scoping

• The scope rules of a language are the rules governing what names
(identifiers) mean at each point in a program.

• We call the scope rules of Scheme (and Python)—those that are
described by environment diagrams as we’ve been using them—static
or lexical scoping.

• But in original Lisp, scoping was dynamic.

• Example (using classic Lisp notation):

(defun f (x) ;; Like (define (f x) ...) in Scheme

(g))

(defun g ()

(* x 2))

(setq x 3) ;; Like set! and also defines x at outer level.

(g) ;; ===> 6

(f 2) ;; ===> 4

(g) ;; ===> 6

• That is, the meaning of x depends on the most recent and still active
definition of x, even where the reference to x is not nested inside
the defining function.

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 7

Eval and Scoping

• Dynamic scoping made eval easy to define: interpret any variables
according to their “current binding.”

• But eval in pure Scheme behaves like normal functions; it would not
have access to the current binding at the place it is called.

• To make it definable (without tricks) in Scheme, one must techni-
cally add a parameter to eval to convey the desired environment.

• However, for the project, we cheat and arrange to have the envi-
ronment magically passed into our primitive Scheme eval function.

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 8

Remaining Cases

• We’ve dealt with function calls, numbers, and symbols.

• This leaves only the special forms.

• All special forms lists indicated by their first symbols:

(quote EXPR) ; Easy: return EXPR unchanged

(lambda (ARGS) EXPR)
(define ID EXPR)
(define (ID ARGS) EXPR)

; Same as (define ID (lambda (ARGS) EXPR))

(if EXPR EXPR-IF-TRUE EXPR-IF-FALSE)
(begin EXPR1 . . . EXPRn) ; Evaluate all EXPRi, return last

(cond ((COND-EXPR1 VAL-EXPR1)

(COND-EXPR2 VAL-EXPR2) ...)

(and EXPR1 EXPR2 . . .)
(or EXPR1 EXPR2 . . .)

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 9

Lambda and Functions

• In the interpreter, evaluating the lambda special form returns a
value of some type for representing functions.

• Its content is dictated by what scheme apply will need:

(lambda (ARGS) EXPR)

– The list ARGS.

– The body EXPR.

– The parent environment: The environment in which the lambda
expression or define that created the function value was evalu-
ated.

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 10

Other Special Forms

• Handling the other special forms is pretty straightforward:

• The if form is typical: to evaluate

(if EXPR EXPR-IF-TRUE EXPR-IF-FALSE)

– Evaluate EXPR.

– If returned value is false (#f), evaluate EXPR-IF-FALSE and re-
turn its value.

– Otherwise, evaluate EXPR-IF-TRUE and return its value.

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 11

Tail-Recursion

• The interpreter so far uses recursion to get Scheme recursion.

• Doesn’t work for long iterations (stack memory overflow).

• For extra credit, you’ll have the chance to complete the tail-recursion
optimization, where tail calls use (in effect) iteration instead.

• Finally, there are many possible suggested extensions for the fun of
it (no extra credit is guaranteed: we want you to sleep sometime).

Last modified: Mon Apr 3 13:58:40 2017 CS61A: Lecture #26 12

	Lecture 26: Interpretating Scheme
	Reading
	scheme_read
	Apply
	Evaluation for Scheme
	Evaluation of Symbols
	Static and Dynamic Scoping
	Eval and Scoping
	Remaining Cases
	Lambda and Functions
	Other Special Forms
	Tail-Recursion

