
Lecture #27: More Scheme Programming

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 1



Recursion and Iteration

• We’ve mentioned before that Scheme uses recursion where most
other languages (such as Python) use special iterative constructs.

• This puts a special burden on Scheme interpreters to handle itera-
tive recursions, known as tail recursions well.

• From the reference manual:

“Implementations of Scheme must be properly tail-recursive.
Procedure calls that occur in certain syntactic contexts called
tail contexts are tail calls. A Scheme implementation is prop-
erly tail-recursive if it supports an unbounded number of [si-
multaneously] active tail calls.

• First, let’s define what that means.

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 2



Tail Contexts

• Basically, an expression is in a tail context if it is evaluated last in a
function body and provides the value of a call to that function.

• A function is tail-recursive if all function calls in its body that can
result in a recursive call on that same function are in tail contexts.

• In effect, Scheme turns recursive calls of such functions into itera-
tions by replacing those calls with one of the function’s tail-context
expressions instead of simply returning.

• This decreases the memory devoted to keeping track of which func-
tions are running and who called them to a constant.

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 3



Tail Contexts in Scheme

• Tail contexts are defined inductively (or recursively). The “bases”
are

(lambda (ARGUMENTS) EXPR1 EXPR2 ... EXPRn) ; Tail contexts in Blue
(define (NAME ARGMENTS) EXPR1 EXPR2 ... EXPRn)

(‘EXPR’ means “Scheme expression”)

• If an expression is in a tail context, then certain parts of it become
tail contexts all by themselves:

(if EXPR THEN-EXPR ELSE-EXPR)

(cond (COND-EXPR1 EXPR11 EXPR12 ... EXPR1n)
(COND-EXPR2 EXPR21 EXPR22 ... EXPR2n)
...)

(and EXPR1 ... EXPRn)
(or EXPR1 ... EXPRn)

(begin EXPR1 ... EXPRn)

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 4



Prime Numbers

(define (prime? x)

"True iff X is prime."

)

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 5



Prime Numbers

(define (prime? x)

"True iff X is prime."

(cond ((< x 2) #f)

((= x 2) #t)

(#t ?))

)

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 6



Prime Numbers

(define (prime? x)

"True iff X is prime."

(define (no-factor? k lim)

"LIM has no divisors >= K and < LIM."

)

(cond ((< x 2) #f)

((= x 2) #t)

(#t ?))

)

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 7



Prime Numbers

(define (prime? x)

"True iff X is prime."

(define (no-factor? k lim)

"LIM has no divisors >= K and < LIM."

)

(cond ((< x 2) #f)

((= x 2) #t)

(#t (no-factor? 2

(floor (+ (sqrt x) 2)))))

)

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 8



Prime Numbers

(define (prime? x)

"True iff X is prime."

(define (no-factor? k lim)

"LIM has no divisors >= K and < LIM."

(cond ((>= k lim) #t)

((= (remainder x k) 0) #f)

(#t ?)))

(cond ((< x 2) #f)

((= x 2) #t)

(#t (no-factor? 2

(floor (+ (sqrt x) 2)))))

)

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 9



Prime Numbers

(define (prime? x)

"True iff X is prime."

(define (no-factor? k lim)

"LIM has no divisors >= K and < LIM."

(cond ((>= k lim) #t)

((= (remainder x k) 0) #f)

(#t (no-factor? (+ k 1) lim))))

(cond ((< x 2) #f)

((= x 2) #t)

(#t (no-factor? 2

(floor (+ (sqrt x) 2)))))

)

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 10



Tail-Recursive Length?

• On several occasions, we’ve computed the length of a linked list like
this:

;; The length of list L

(define (length L)

(if (eqv? L ’()) ; Alternative: (null? L)

0

(+ 1 (length (cdr L)))))

but this is not tail recursive. How do we make it so?

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 11



Tail-Recursive Length?

• On several occasions, we’ve computed the length of a linked list like
this:

;; The length of list L

(define (length L)

(if (eqv? L ’()) ; Alternative: (null? L)

0

(+ 1 (length (cdr L)))))

but this is not tail recursive. How do we make it so?

• Try a helper method:

;; The length of list L

(define (length L)

(define (length+ ?)

)

(length+ ?))

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 12



Tail-Recursive Length?

• On several occasions, we’ve computed the length of a linked list like
this:

;; The length of list L

(define (length L)

(if (eqv? L ’()) ; Alternative: (null? L)

0

(+ 1 (length (cdr L)))))

but this is not tail recursive. How do we make it so?

• Try a helper method:

;; The length of list L

(define (length L)

(define (length+ n R)

"The length of R plus N."

)

(length+ 0 L))

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 13



Tail-Recursive Length?

• On several occasions, we’ve computed the length of a linked list like
this:

;; The length of list L

(define (length L)

(if (eqv? L ’()) ; Alternative: (null? L)

0

(+ 1 (length (cdr L)))))

but this is not tail recursive. How do we make it so?

• Try a helper method:

;; The length of list L

(define (length L)

(define (length+ n R)

"The length of R plus N."

(if (null? R) n

(length+ (+ n 1) (cdr R))))

(length+ 0 L))

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 14



Standard List Searches: assoc, etc.

• The functions assq, assv, and assoc classically serve the purpose of
Python dictionaries.

• An association list is a list of key/value pairs. The Python dictionary
{1 : 5, 3 : 6, 0 : 2} might be represented

((1 . 5) (3 . 6) (0 . 2))

• The assx functions access this list, returning the pair whose car

matches a key argument.

• The difference between the methods is that

– assq compares using eq? (Python is).

– assv uses eqv? (which is like Python == on numbers and like is
otherwise).

– assoc uses equal? (does “deep” comparison of lists).

;; The first item in L whose car is eqv? to key, or #f if none.

(define (assv key L)

)

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 15



Assv Solution

;; The first item in L whose car is eqv? to key, or #f if none.

(define (assv key L)

(cond ((null? L) #f)

((eqv? key (caar L)) (car L))

(else (assv key (cdr L))))

)

• This is a tail-recursive function.

• Why caar ((car (car ...)))?

– L has the form ((key1 . val1) (key2 . val2) ...).

– So the car of L is (key1 . val1), and its key is therefore (car

(car L)) (or caar for short).

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 16



A classic: reduce

;; Assumes f is a two-argument function and L is a list.

;; If L is (x1 x2...xn), the result of applying f n-1 times

;; to give (f (f (... (f x1 x2) x3) x4) ...).

;; If L is empty, returns f with no arguments.

;; [Simply Scheme version.]

;; >>> (reduce + ’(1 2 3 4)) ===> 10

;; >>> (reduce + ’()) ===> 0

(define (reduce f L)

)

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 17



Reduce Solution (1)

;; Assumes f is a two-argument function and L is a list.

;; If L is (x1 x2...xn), the result of applying f n-1 times

;; to give (f (f (... (f x1 x2) x3) x4) ...).

;; If L is empty, returns f with no arguments.

(define (reduce f L)

(cond ((null? L)

(f)) ; Odd case with no items

((null? (cdr L))

(car L)) ; One item

(else (reduce f (cons (f (car L) (cadr L))

(cddr L))))))

; E.g.:

; (reduce + ’(2 3 4))

; -calls-> (reduce + (5 4))

; -calls-> (reduce + (9))

; -yields-> 9

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 18



Reduce Solution (2)

;; Assumes f is a two-argument function and L is a list.

;; If L is (x1 x2...xn), the result of applying f n-1 times

;; to give (f (f (... (f x1 x2) x3) x4) ...).

;; If L is empty, returns f with no arguments.

(define (reduce f L)

(define (reduce-tail accum R)

(cond ((null? R) accum)

(else (reduce-tail (f accum (car R)) (cdr R)))))

(if (null? L) (f) ;; Special case

(reduce-tail (car L) (cdr L))))

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 19



A Harder Case: Map

• We’ve seen map many times.

• An obvious Scheme version:
;; Assuming f is a one-argument function and L a list, the list of

;; results of applying f to each element of L

(define (map f L)

(if (null? L) ()

(cons (f (car L) (map f (cdr L))))))

• Is this tail-recursive?

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 20



Making map tail recursive

• Need to pass along the partial results and add to them.

• Problem: cons adds to the front of a list, so we end up with a reverse
of what we want.

(define (map f L)

;; The result of prepending the reverse of (map rest) to

;; the list partial-result

(define (map+ partial-result rest)

(if (null? rest) partial-result

(map+ (cons (f (car rest)) partial-result)

(cdr rest))))

(reverse (map+ () L)))

• What about reverse?

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 21



And Finally, Reverse

• Actually, we can use the very problem that cons creates to solve it!

• That is, consing items from a list from left to right results in a
reversed list:

(define (reverse L)

(define (reverse+ partial-result rest)

(if (null? rest) partial-result

(reverse+ (cons (car rest) partial-result)

(cdr rest))))

(reverse+ () L))

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 22



Another Example

• Consider the problem of shuffling together two lists, L1 and L2. The
result consists of the first item of L1, then the first of L2, then the
second of L1, etc., until one or the other list has no more values.

• Obvious recursive solution:

(define (shuffle1 L1 L2)

"The list consisting of the first element of L1, then"

"the first of L2, then the second of L1, etc., until"

"the elements of one or the other list is exhausted."

(if (null? L1) ’()

?))

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 23



Another Example

• Consider the problem of shuffling together two lists, L1 and L2. The
result consists of the first item of L1, then the first of L2, then the
second of L1, etc., until one or the other list has no more values.

• Obvious recursive solution:

(define (shuffle1 L1 L2)

"The list consisting of the first element of L1, then"

"the first of L2, then the second of L1, etc., until"

"the elements of one or the other list is exhausted."

(if (null? L1) ’()

(cons (car L1) (shuffle1 L2 (cdr L1)))))

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 24



Another Example

• Consider the problem of shuffling together two lists, L1 and L2. The
result consists of the first item of L1, then the first of L2, then the
second of L1, etc., until one or the other list has no more values.

• Obvious recursive solution:

(define (shuffle1 L1 L2)

"The list consisting of the first element of L1, then"

"the first of L2, then the second of L1, etc., until"

"the elements of one or the other list is exhausted."

(if (null? L1) ’()

(cons (car L1) (shuffle1 L2 (cdr L1)))))

• Not tail recursive. Again, we can use a helper method:

(define (shuffle L1 L2)

(define (shuffle+ reversed-result L1 L2)

(if ?))

(shuffle+ ’() L1 L2))

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 25



Another Example

• Consider the problem of shuffling together two lists, L1 and L2. The
result consists of the first item of L1, then the first of L2, then the
second of L1, etc., until one or the other list has no more values.

• Obvious recursive solution:

(define (shuffle1 L1 L2)

"The list consisting of the first element of L1, then"

"the first of L2, then the second of L1, etc., until"

"the elements of one or the other list is exhausted."

(if (null? L1) ’()

(cons (car L1) (shuffle1 L2 (cdr L1)))))

• Not tail recursive. Again, we can use a helper method:

(define (shuffle L1 L2)

(define (shuffle+ reversed-result L1 L2)

(if (null? L1) (reverse reversed-result)

?))

(shuffle+ ’() L1 L2))

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 26



Another Example

• Consider the problem of shuffling together two lists, L1 and L2. The
result consists of the first item of L1, then the first of L2, then the
second of L1, etc., until one or the other list has no more values.

• Obvious recursive solution:

(define (shuffle1 L1 L2)

"The list consisting of the first element of L1, then"

"the first of L2, then the second of L1, etc., until"

"the elements of one or the other list is exhausted."

(if (null? L1) ’()

(cons (car L1) (shuffle1 L2 (cdr L1)))))

• Not tail recursive. Again, we can use a helper method:

(define (shuffle L1 L2)

(define (shuffle+ reversed-result L1 L2)

(if (null? L1) (reverse reversed-result)

(shuffle+ (cons (car L1) reversed-result) L2 (cdr L1))))

(shuffle+ ’() L1 L2))

Last modified: Wed Mar 22 13:15:14 2017 CS61A: Lecture #27 27


	Lecture #27: More Scheme Programming
	Recursion and Iteration
	Tail Contexts
	Tail Contexts in Scheme
	Prime Numbers
	Tail-Recursive Length?
	Standard List Searches: assoc, etc.
	Assv Solution
	A classic: reduce
	Reduce Solution (1)
	Reduce Solution (2)
	A Harder Case: Map
	Making map tail recursive
	And Finally, Reverse
	Another Example

