
Lecture #22: The Scheme Language

Scheme is a dialect of Lisp:

• “The only programming language that is beautiful.”
—Neal Stephenson

• “The greatest single programming language ever designed”
—Alan Kay
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Scheme Background

• The programming language Lisp is the second-oldest programming
language still in use (introduced in 1958).

• Scheme is a Lisp dialect invented in the 1970s by Guy Steele
Great Quux”), who has also participated in the development of
Java, and Common Lisp.

• Designed to simplify and clean up certain irregularities in
alects at the time.

• Used in a fast Lisp compiler (Rabbit).

• Still maintained by a standards committee (although both Brian
vey and I agree that recent versions have accumulated an unfortu-
nate layer of cruft).
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Data Types

• We divide Scheme data into atoms and pairs.

• The classical atoms:

– Numbers: integer, floating-point, complex, rational.

– Symbols.

– Booleans: #t, #f.

– The empty list: ().

– Procedures (functions).

• Some newer-fangled, mutable atoms:

– Vectors: Python lists.

– Strings.

– Characters: Like Python 1-element strings.

• Pairs are like two-element Python lists, where the elements are
cursively) Scheme values.
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Symbols

• Lisp was originally designed to manipulate symbolic data: e.g.,
mulae as opposed merely to numbers.

• Typically, such data is recursively defined (e.g., “an expression
sists of an operator and subexpressions”).

• The “base cases” had to include numbers, but also variables or

• For this purpose, Lisp introduced the notion of a symbol:

– Essentially a constant string.

– Two symbols with the same “spelling” (string) are by default
same object (but usually, case is ignored).

• The main operation on symbols is equality.

• Examples:

a bumblebee numb3rs * + / wide-ranging !?@*!!

(As you can see, symbols can include non-alphanumeric characters.)
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Pairs and Lists

• The Scheme notation for the pair of values V1 and V2 is

(V1 . V2)

• As we’ve seen, one can build practically any data structure
pairs.

• In Scheme, the main one is the (linked) list, defined recursively
an rlist:

– The empty list, written “()”, is a list.

– The pair consisting of a value V and a list L is a list that
with V , and whose tail is L.

• Lists are so prevalent that there is a standard abbreviation:

Abbreviation Means
(V ) (V . ())
(V1 V2 · · · Vn) (V1 . (V2 . (· · · (Vn . ()))))
(V1 V2 · · · Vn−1 . Vn) (V1 . (V2 . (· · · (Vn−1 . Vn))))
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Examples of Pairs and Lists

(3 . 2) 3 2

(x = 3) x = 3

(+ (* 3 7) (- x)) +

* 3 7

- x

( (a+ . 289) (a . 269) (a- . 255) )

a+ 289 a 269 a- 255
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Programs

• Scheme expressions and programs are instances of Lisp data
tures (“Scheme programs are Scheme data”).

• At the bottom, numerals, booleans, characters, and strings
pressions that stand for themselves.

• Most lists (aka forms) stand for function calls:

(OP E1 · · · En)

as a Scheme expression means “evaluate OP and the Ei (recursively),
and then apply the value of OP, which must be a function,
values of the arguments Ei.”

• Examples:

(> 3 2) ; 3 > 2 ==> #t

(- (/ (* (+ 3 7 10) (- 1000 8)) 992) 17)

; ((3 + 7 + 10) · (1000− 8))/992− 17

(pair? (list 1 2)) ; ==> #t
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Quotation

• Since programs are data, we have a problem: How do we say,
“Set the variable x to the three-element list (+ 1 2)” without
meaning “Set the variable x to the value 3?”

• In English, we call this a use vs. mention distinction.

• For this, we need a special form—a construct that does not
evaluate its operands.

• (quote E) yields E itself as the value, without evaluating
Scheme expression:

scm> (+ 1 2)

3

scm> (quote (+ 1 2))

(+ 1 2)

scm> ’(+ 1 2) ; Shorthand. Converted to (quote (+

(+ 1 2)

• How about
scm> (quote (1 2 ’(3 4))) ;?
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Special Forms

• (quote E) is a special form: an exception to the general rule
evaluting functional forms.

• A few other special forms—lists identified by their OP—also
meanings that generally do not involve simply evaluating their

(if (> x y) x y) ; Like Python ... if ... else

(and (integer?) (> x y) (< x z)) ; Like Python ’and’

(or (not (integer? x)) (< x L) (> x U)) ; Like Python ’or’

(lambda (x y) (/ (* x x) y)) ; Like Python lambda

; yields function

(define pi 3.14159265359) ; Definition

(define (f x) (* x x)) ; Function Definition

(set! x 3) ; Assignment ("set bang")
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Traditional Conditionals

Also, the fancy traditional Lisp conditional form:

scm> (define x 5)

scm> (cond ((< x 1) ’small)

((< x 3) ’medium)

((< x 5) ’large)

(#t ’big))

big

which is the Lisp version of Python’s

"small" if x < 1 else "medium" if x < 3 else "large" if x <
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Symbols

• When evaluated as a program, a symbol acts like a variable name.

• Variables are bound in environments, just as in Python, although
syntax differs.

• To define a new symbol, either use it as a parameter name
or use the “define” special form:

(define pi 3.1415926)

(define pi**2 (* pi pi))

• This (re)defines the symbols in the current environment. The
ond expression is evaluated first.

• To assign a new value to an existing binding, use the set!

form:

(set! pi 3)

• Here, pi must be defined, and it is that definition that is changed
(not like Python).
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Function Evaluation

• Function evaluation is just like Python: same environment
same rules for what it means to call a user-defined function.

• To create a new function, we use the lambda special form:

scm> ( (lambda (x y) (+ (* x x) (* y y))) 3 4)

25

scm> (define fib

(lambda (n) (if (< n 2) n (+ (fib (- n 2)) (fib (-

scm> (fib 5)

5

• The last is so common, there’s an abbreviation:

scm> (define (fib n)

(if (< n 2) n (+ (fib (- n 2)) (fib (- n 1)))))
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Numbers

• All the usual numeric operations and comparisons:

scm> (- (quotient (* (+ 3 7 10) (- 1000 8)) 992) 17)

3

scm> (/ 3 2)

1.5

scm> (quotient 3 2)

1

scm> (> 7 2)

#t

scm> (< 2 4 8)

#t

scm> (= 3 (+ 1 2) (- 4 1))

#t

scm> (integer? 5)

#t

scm> (integer? ’a)

#f
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Lists and Pairs

• Pairs (and therefore lists) have a basic constructor and accessors:

scm> (cons 1 2)

(1 . 2)

scm> (cons ’a (cons ’b ’()))

(a b)

scm> (define L (a b c))

scm> (car L)

a

scm> (cdr L)

(b c)

scm> (cadr L) ; (car (cdr L))

b

scm> (cdddr L) ; (cdr (cdr (cdr L)))

()

• And one that is especially for lists:

scm> (list (+ 1 2) ’a 4)

(3 a 4)

scm> ; Why not just write ((+ 1 2) a 4)?
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Binding Constructs: Let

• Sometimes, you’d like to introduce local variables or named
stants.

• The let special form does this:

scm> (define x 17)

scm> (let ((x 5)

(y (+ x 2)))

(+ x y))

24

• This is a derived form, equivalent to:

scm> ((lambda (x y) (+ x y)) 5 (+ x 2))
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Loops and Tail Recursion

• With just the functions and special forms so far, can write anything.

• But there is one problem: how to get an arbitrary iteration
doesn’t overflow the execution stack because recursion gets
deep?

• In Scheme, tail-recursive functions must work like iterations.
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Loops and Tail Recursion (II)

• This means that in this program:

Scheme Python
(define (fib n)

(define (fib1 n1 n2 k)

(if (= k n) n2

(fib1 n2

(+ n1 n2)

(+ k 1))))

(if (= n 0) 0 (fib1 0 1 1)))

def fib(n):

def fib1(n1, n2, k):

return \

n2 if k == n \

else fib1(n2, n1+n2,

return 0 if n == 0 \

else fib1(0, 1,

Rather than having one call of fib1 recursively call itself, we
the outer call on fib1 ((fib1 0 1 1)) with the recursive call
1 1 2)), and then replace that with (fib1 1 2 3), then (fib1

4), etc.

• At each inner tail-recursive call, in other words, we forget
quence of calls that got us there, so the system need not use
memory to go deeper.
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A Simple Example

• Consider
(define (sum init L)

(if (null? L) init

(sum (+ init (car L)) (cdr L))))

• Here, can evaluate a call by substitution, and then keep replacing
subexpressions by their values or by simpler expressions:

(sum 0 ’(1 2 3))

(if (null? ’(1 2 3)) 0 (sum ...))

(if #f 0 (sum (+ 0 (car ’(1 2 3))) (cdr ’(1 2 3))))

(sum (+ 0 (car ’(1 2 3))) (cdr ’(1 2 3)))

(sum (+ 0 1) ’(2 3))

(sum 1 ’(2 3))

(if (null? ’(2 3)) 1 (sum ...))

(if #f 1 (sum (+ 1 (car ’(2 3))) (cdr ’(2 3))))

(sum (+ 1 (car ’(2 3))) (cdr ’(2 3)))

etc.
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