
Lecture #22: The Scheme Language

Scheme is a dialect of Lisp:

• “The only programming language that is beautiful.”
—Neal Stephenson

• “The greatest single programming language ever designed”
—Alan Kay

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Scheme Background

• The programming language Lisp is the second-oldest programming
language still in use (introduced in 1958).

• Scheme is a Lisp dialect invented in the 1970s by Guy Steele
Great Quux”), who has also participated in the development of
Java, and Common Lisp.

• Designed to simplify and clean up certain irregularities in
alects at the time.

• Used in a fast Lisp compiler (Rabbit).

• Still maintained by a standards committee (although both Brian
vey and I agree that recent versions have accumulated an unfortu-
nate layer of cruft).

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Data Types

• We divide Scheme data into atoms and pairs.

• The classical atoms:

– Numbers: integer, floating-point, complex, rational.

– Symbols.

– Booleans: #t, #f.

– The empty list: ().

– Procedures (functions).

• Some newer-fangled, mutable atoms:

– Vectors: Python lists.

– Strings.

– Characters: Like Python 1-element strings.

• Pairs are like two-element Python lists, where the elements are
cursively) Scheme values.

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Symbols

• Lisp was originally designed to manipulate symbolic data: e.g.,
mulae as opposed merely to numbers.

• Typically, such data is recursively defined (e.g., “an expression
sists of an operator and subexpressions”).

• The “base cases” had to include numbers, but also variables or

• For this purpose, Lisp introduced the notion of a symbol:

– Essentially a constant string.

– Two symbols with the same “spelling” (string) are by default
same object (but usually, case is ignored).

• The main operation on symbols is equality.

• Examples:

a bumblebee numb3rs * + / wide-ranging !?@*!!

(As you can see, symbols can include non-alphanumeric characters.)

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Pairs and Lists

• The Scheme notation for the pair of values V1 and V2 is

(V1 . V2)

• As we’ve seen, one can build practically any data structure
pairs.

• In Scheme, the main one is the (linked) list, defined recursively
an rlist:

– The empty list, written “()”, is a list.

– The pair consisting of a value V and a list L is a list that
with V , and whose tail is L.

• Lists are so prevalent that there is a standard abbreviation:

Abbreviation Means
(V) (V . ())
(V1 V2 · · · Vn) (V1 . (V2 . (· · · (Vn . ()))))
(V1 V2 · · · Vn−1 . Vn) (V1 . (V2 . (· · · (Vn−1 . Vn))))

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Examples of Pairs and Lists

(3 . 2) 3 2

(x = 3) x = 3

(+ (* 3 7) (- x)) +

* 3 7

- x

((a+ . 289) (a . 269) (a- . 255))

a+ 289 a 269 a- 255

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Programs

• Scheme expressions and programs are instances of Lisp data
tures (“Scheme programs are Scheme data”).

• At the bottom, numerals, booleans, characters, and strings
pressions that stand for themselves.

• Most lists (aka forms) stand for function calls:

(OP E1 · · · En)

as a Scheme expression means “evaluate OP and the Ei (recursively),
and then apply the value of OP, which must be a function,
values of the arguments Ei.”

• Examples:

(> 3 2) ; 3 > 2 ==> #t

(- (/ (* (+ 3 7 10) (- 1000 8)) 992) 17)

; ((3 + 7 + 10) · (1000− 8))/992− 17

(pair? (list 1 2)) ; ==> #t

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Quotation

• Since programs are data, we have a problem: How do we say,
“Set the variable x to the three-element list (+ 1 2)” without
meaning “Set the variable x to the value 3?”

• In English, we call this a use vs. mention distinction.

• For this, we need a special form—a construct that does not
evaluate its operands.

• (quote E) yields E itself as the value, without evaluating
Scheme expression:

scm> (+ 1 2)

3

scm> (quote (+ 1 2))

(+ 1 2)

scm> ’(+ 1 2) ; Shorthand. Converted to (quote (+

(+ 1 2)

• How about
scm> (quote (1 2 ’(3 4))) ;?

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Special Forms

• (quote E) is a special form: an exception to the general rule
evaluting functional forms.

• A few other special forms—lists identified by their OP—also
meanings that generally do not involve simply evaluating their

(if (> x y) x y) ; Like Python ... if ... else

(and (integer?) (> x y) (< x z)) ; Like Python ’and’

(or (not (integer? x)) (< x L) (> x U)) ; Like Python ’or’

(lambda (x y) (/ (* x x) y)) ; Like Python lambda

; yields function

(define pi 3.14159265359) ; Definition

(define (f x) (* x x)) ; Function Definition

(set! x 3) ; Assignment ("set bang")

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Traditional Conditionals

Also, the fancy traditional Lisp conditional form:

scm> (define x 5)

scm> (cond ((< x 1) ’small)

((< x 3) ’medium)

((< x 5) ’large)

(#t ’big))

big

which is the Lisp version of Python’s

"small" if x < 1 else "medium" if x < 3 else "large" if x <

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Symbols

• When evaluated as a program, a symbol acts like a variable name.

• Variables are bound in environments, just as in Python, although
syntax differs.

• To define a new symbol, either use it as a parameter name
or use the “define” special form:

(define pi 3.1415926)

(define pi**2 (* pi pi))

• This (re)defines the symbols in the current environment. The
ond expression is evaluated first.

• To assign a new value to an existing binding, use the set!

form:

(set! pi 3)

• Here, pi must be defined, and it is that definition that is changed
(not like Python).

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Function Evaluation

• Function evaluation is just like Python: same environment
same rules for what it means to call a user-defined function.

• To create a new function, we use the lambda special form:

scm> ((lambda (x y) (+ (* x x) (* y y))) 3 4)

25

scm> (define fib

(lambda (n) (if (< n 2) n (+ (fib (- n 2)) (fib (-

scm> (fib 5)

5

• The last is so common, there’s an abbreviation:

scm> (define (fib n)

(if (< n 2) n (+ (fib (- n 2)) (fib (- n 1)))))

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Numbers

• All the usual numeric operations and comparisons:

scm> (- (quotient (* (+ 3 7 10) (- 1000 8)) 992) 17)

3

scm> (/ 3 2)

1.5

scm> (quotient 3 2)

1

scm> (> 7 2)

#t

scm> (< 2 4 8)

#t

scm> (= 3 (+ 1 2) (- 4 1))

#t

scm> (integer? 5)

#t

scm> (integer? ’a)

#f

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Lists and Pairs

• Pairs (and therefore lists) have a basic constructor and accessors:

scm> (cons 1 2)

(1 . 2)

scm> (cons ’a (cons ’b ’()))

(a b)

scm> (define L (a b c))

scm> (car L)

a

scm> (cdr L)

(b c)

scm> (cadr L) ; (car (cdr L))

b

scm> (cdddr L) ; (cdr (cdr (cdr L)))

()

• And one that is especially for lists:

scm> (list (+ 1 2) ’a 4)

(3 a 4)

scm> ; Why not just write ((+ 1 2) a 4)?

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Binding Constructs: Let

• Sometimes, you’d like to introduce local variables or named
stants.

• The let special form does this:

scm> (define x 17)

scm> (let ((x 5)

(y (+ x 2)))

(+ x y))

24

• This is a derived form, equivalent to:

scm> ((lambda (x y) (+ x y)) 5 (+ x 2))

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Loops and Tail Recursion

• With just the functions and special forms so far, can write anything.

• But there is one problem: how to get an arbitrary iteration
doesn’t overflow the execution stack because recursion gets
deep?

• In Scheme, tail-recursive functions must work like iterations.

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

Loops and Tail Recursion (II)

• This means that in this program:

Scheme Python
(define (fib n)

(define (fib1 n1 n2 k)

(if (= k n) n2

(fib1 n2

(+ n1 n2)

(+ k 1))))

(if (= n 0) 0 (fib1 0 1 1)))

def fib(n):

def fib1(n1, n2, k):

return \

n2 if k == n \

else fib1(n2, n1+n2,

return 0 if n == 0 \

else fib1(0, 1,

Rather than having one call of fib1 recursively call itself, we
the outer call on fib1 ((fib1 0 1 1)) with the recursive call
1 1 2)), and then replace that with (fib1 1 2 3), then (fib1

4), etc.

• At each inner tail-recursive call, in other words, we forget
quence of calls that got us there, so the system need not use
memory to go deeper.

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

A Simple Example

• Consider
(define (sum init L)

(if (null? L) init

(sum (+ init (car L)) (cdr L))))

• Here, can evaluate a call by substitution, and then keep replacing
subexpressions by their values or by simpler expressions:

(sum 0 ’(1 2 3))

(if (null? ’(1 2 3)) 0 (sum ...))

(if #f 0 (sum (+ 0 (car ’(1 2 3))) (cdr ’(1 2 3))))

(sum (+ 0 (car ’(1 2 3))) (cdr ’(1 2 3)))

(sum (+ 0 1) ’(2 3))

(sum 1 ’(2 3))

(if (null? ’(2 3)) 1 (sum ...))

(if #f 1 (sum (+ 1 (car ’(2 3))) (cdr ’(2 3))))

(sum (+ 1 (car ’(2 3))) (cdr ’(2 3)))

etc.

Last modified: Sat Mar 18 00:06:57 2017 CS61A: Lecture

	Lecture #22: The Scheme Language
	Scheme Background
	Data Types
	Symbols
	Pairs and Lists
	Examples of Pairs and Lists
	Programs
	Quotation
	Special Forms
	Traditional Conditionals
	Symbols
	Function Evaluation
	Numbers
	Lists and Pairs
	Binding Constructs: Let
	Loops and Tail Recursion
	Loops and Tail Recursion (II)
	A Simple Example

