
Lecture #21: Exceptional Conditions

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 1

Failed preconditions

• Part of the contract between the implementor and client is the set
of preconditions under which a function, method, etc. is supposed
to operate.

• Example:

class Rational:

def init (self, x, y):

"""The rational number x/y. Assumes that x and y

are ints and y != 0."""

• Here, “x and y are ints and y!=0” is a precondition on the client.

• So what happens when the precondition is not met?

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 2

Programmer Errors

• Python has preconditions of its own.

• E.g., type rules on operations: 3 + (2, 1) is invalid.

• What happens when we (programmers) violate these preconditions?

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 3

Outside Events

• Some operations may entail the possibility of errors caused by the
data or the environment in which a program runs.

• I/O over a network is a common example: connections go down; data
is corrupted.

• User input is another major source of error: we may ask to read an
integer numeral, and be handed something non-numeric.

• Again, what happens when such errors occur?

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 4

Possible Repsonses

• One approach is to take the point of view that when a precondition is
violated, all bets are off and the implementor is free to do anything.

– Corresponds to a logical axiom: False ⇒ True.

– But not a particularly helpful or safe approach.

• One can adopt a convention in which erroneous operations return
special error values.

– Feasible in Python, but less so in languages that require specific
types on return values.

– Used in the C library, but can’t be used for non-integer-returning
functions.

– Error prone (too easy to ignore errors).

– Cluttered (reader is forced to wade through a lot of error-handling
code, a distraction from the main algorithm).

• Numerous programming languages, including Python, support a gen-
eral notion of exceptional condition or exception with supporting
syntax and semantics that separate error handling from main pro-
gram logic.

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 5

Assertions

• The Python assert statement provides a standard way to check for
programmer errors.

• Two forms:

assert CONDITION
assert CONDITION, DESCRIPTION

• Equivalent to either

if debug and not CONDITION:
raise AssertionError

if debug and not CONDITION:
raise AssertionError(DESCRIPTION)

• By default, debug is true. python3 -O. . . makes it false.

• Because it can be turned off, this is not appropriate for detection
of user errors, or other errors that the program is deliberately
designed to handle.

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 6

Exceptions

• An exception mechanism is a control structure that

– Halts execution at one point in a program (called raising or throw-
ing an exception).

– Resumes execution at some other, previously designated point in
the program (called catching or handling an exception).

• In Python, the raise statement raises (or throws exceptions, and
the try statement catches them.

def f0(...):

try:

g0(...) # 1. Call of g0...

OTHER STUFF # Skipped

except:

handle oops # 4. Handle problem

def g1(...): # 2. Called by g0, possibly many calls down

if detectError():

raise Oops() # 3. Raise exception

MORE # Skipped

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 7

Standard Exceptions

• Exceptions are objects of builtin class BaseException or a subtype
of it.

• The Python language and its library uses several predefined sub-
classes, such as:

TypeError A value has the wrong type for an operation.

IndexError Out-of-bounds list or tuple index (e.g.).

KeyError Nonexistent key to dictionary

ValueError Other inappropriate values of the right type.

AssertionError An assert statement with a false assertion.

IOError Non-existent file, e.g.

OSError Bad operand to an operating-system call.

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 8

Communicating the Reason

• Normally, the handler would like to know the reason for an excep-
tion.

• “Reason,” being a noun, suggests we use objects, which is what Python
does.

• Python defines the class BaseException. It or any subclass of it may
convey information to a handler. We’ll call these exception classes.

• BaseClassException carries arbitrary information as if declared:

class BaseException:

def init (self, *args):

self.args = args

...

• The raise statement then packages up and sends information to a
handler:

raise ValueError("x must be positive", x, y)

raise ValueError # Short for raise ValueError()

e = ValueError("exceptions are just objects!")

raise e # So this works, too

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 9

Handlers

• A function indicates that something is wrong; it is the client (caller)
that decides what to do about it.

• The try statement allows one to provide one or more handlers for
a set of statements, with selection based on the type of exception
object thrown.

try:

assorted statements
except ValueError:

print("Something was wrong with the arguments")

except EnvironmentError: # Also catches subtypes IOError, OSError

print("The operating system is telling us something")

except: # Some other exception

print("Something wrong")

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 10

Retrieving the Exception

• So far, we’ve just looked at exception types.

• To get at the exception objects, use a bit more syntax:

try:

assorted statements
except ValueError as exc:

print("Something was wrong with the arguments: {0}", exc)

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 11

Cleaning Up and Reraising

• Sometimes we catch an exception in order to clean things up before
the real handler takes over.

inp = open(aFile)

try:

Assorted processing
inp.close()

except:

inp.close()

raise # Reraise the same exception

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 12

Finally Clauses

• More generally, we can clean things up regardless of how we leave
the try statement:

for i in range(100)

try:

setTimer(10) # Set time limit

if found(i):

break

longComputationThatMightTimeOut()

finally:

cancelTimer()

Continue with ’break’ or with exception

• This fragment will always cancel the timer, whether the loop ends
because of break or a timeout exception.

• After which, it carries on whatever caused the try to stop.

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 13

“With” Clauses

• The finally statement comes in useful in a number of standard
places, such as generally

– When the program reserves some resource for its use from a
small set of such resources, and must be sure to return it to
prevent deadlocking the system.

– When the program creates some kind of persistant object (like a
file) that requires some specific action before it is complete.

• Such situations are sufficiently common that Python’s designers de-
cided to provide a more concise and general construct to handle
them.

• Just as for statements and generator definitions are associated
with particular kinds of object type—iterator and iterables—this
new construct is associated with a kind of object known as a context
manager.

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 14

Example

• If you really want to be tidy about using a file, you need the following
pieces, at least:

def writeAll(filename, text):

"""Create (or overwrite) a file named FILENAME with the string TEXT."""

try:

out = open(filename, "w") # Open for writing

out.write(text)

finally:

out.close() # Make sure everything is written

• This can be effected concisely with

def writeAll(filename, text):

"""Create (or overwrite) a file named FILENAME with the string TEXT."""

with open(filename, "w") as out:

out.write(text)

• This is because Python files (returned by open) implement the meth-
ods required to be context managers: enter and exit .

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 15

With-Statement Details (Simplified)

• The statement

with E1 as VAR:
STATEMENTS

is essentially the same as

mgr = E1
VAR = mgr. enter ()

ok = True

try:

try:

STATEMENTS
except:

ok = False

if not mgr. exit (info about the exception):

raise # Re-raise the exception

finally:

if ok:

mgr. exit (None, None, None)

• [WARNING: This is not entirely correct, being simplified, but it
gives the general idea.]

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 16

Other Uses of Exceptions

• We’ve described a software-engineering motivation for exceptions:
dealing with erroneous conditions.

• But from a programming-language point of view, they’re just another
control structure.

• Python uses them in non-erroneous situations as well:

– We’ve seen that iterators use StopIteration to indicate they
have no more elements.

– Alternatively, Python can create an iterator out of any object
that has a getitem method, which (as usual) raises IndexError
to indicate the end of a sequence.

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 17

Summary

• Exceptions are a way of returning information from a function “out
of band,” and allowing programmers to clearly separate error han-
dling from normal cases.

• In effect, specifying possible exceptions is therefore part of the
interface.

• Usually, the specification is implicit: one assumes that violation of a
precondition might cause an exception.

• When a particular exception indicates something that might nor-
mally arise (e.g., bad user input), it will often be mentioned explicitly
in the documentation of a function.

• Finally, raise and try may be used purely as normal control struc-
tures. By convention, the exceptions used in this case don’t end in
“Error.”

Last modified: Thu Mar 16 16:52:45 2017 CS61A: Lecture #21 18

	Lecture #21: Exceptional Conditions
	Failed preconditions
	Programmer Errors
	Outside Events
	Possible Repsonses
	Assertions
	Exceptions
	Standard Exceptions
	Communicating the Reason
	Handlers
	Retrieving the Exception
	Cleaning Up and Reraising
	Finally Clauses
	``With'' Clauses
	Example
	With-Statement Details (Simplified)
	Other Uses of Exceptions
	Summary

