
Lecture #20: Search and Sets Revisited

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 1

Container Objects and Searching

• Lists, linked lists, trees, and dictionaries are various objects whose
principle purpose is to contain values and present them in various
ways.

• We’ve principally considered operations that involve retrieving all
values and doing something with them.

• But a central activity of many programs and algorithms is finding a
value that meets certain criteria in one of these containers.

• Several Python data structures provide methods for finding:

x in aList # Is x in aList?

x in aDict # Is x a key in aDict?

aDict[x] # What is V if aDict contains the entry (x, V)?

"61A" in text # Does substring ’61A’ appear in string text?

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 2

Sets

• Current versions of Python also have sets, which are intended to
behave like mathematical sets.

• Examples:

A = { 1, 3, 2 } # Definition by extension

B = set([1, 3, 5]) # Contents can come from an iterable

set() # The empty set

{} # The empty dictionary (sorry)

{ x for x in L if x % 2 == 1 }

Set generator: odd members of L

Like {x|x ∈ L and x is odd }

A | B == { 1, 2, 3, 5 } == A.union(B) # A ∪B

A & B == { 1, 3 } == A.intersection(B) # A ∩B

A - B == { 2 } == A.difference(B) == { x for x in A if x not in B }

A < (A | B) == True # A ⊂ A ∪B

3 in A == True # 3 ∈ A

len(A) == 3 # |A| or size of A

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 3

Sets are Iterables

• Like other container types, one can iterate over sets.

• Python sets are unordered: ordering of iterator results is unde-
fined.

>>> for x in { 5000, 3000, 100 }: print(x, end=" ")

3000 5000 100

>>> list({ 5000, 3000, 100 })

[3000, 5000, 100]

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 4

Example

How can I test whether a list contains duplicates?
def hasDuplicates(L):

"""Return true iff list L contains duplicated values."""

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 5

Implementing Sets: Unordered Lists

• Clearly, lists also contain collections of values, so we could use them
to implement sets.

• Must be careful to avoid duplicate elements (important when iter-
ating).

• The algorithm for “member of” (x in S) is familiar:

def contains(S, x):

"""True iff list S (considered as a set) contains x."""

for y in S:

if x == y:

return True

return False

• If N is the length of S, what is the worst-case time bound?

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 6

Implementing Sets: Unordered Lists

• Clearly, lists also contain collections of values, so we could use them
to implement sets.

• Must be careful to avoid duplicate elements (important when iter-
ating).

• The algorithm for “member of” (x in S) is familiar:

def contains(S, x):

"""True iff list S (considered as a set) contains x."""

for y in S:

if x == y:

return True

return False

• If N is the length of S, what is the worst-case time bound? Answer:
Θ(N)

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 7

Implementing Sets: Insertion/Formation w/ Unordered
List

What’s the time required for this? Assume appending to a list takes
O(1) time (which is true on average).
def toSet(L):

"""Returns an unordered list containing all values in L without

duplicates."""

result = []

for x in L:

if not contains(result, x):

result.append(x)

return result

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 8

Implementing Sets: Insertion/Formation w/ Unordered
List

What’s the time required for this? Assume appending to a list takes
O(1) time (which is true on average).
def toSet(L):

"""Returns an unordered list containing all values in L without

duplicates."""

result = []

for x in L:

if not contains(result, x):

result.append(x)

return result

Answer: Θ(N 2)

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 9

Implementing Sets: Ordered Lists

• If we keep list sorted (say in ascending order), can use binary search:

def contains(S, x):

"""Returns true if X is in S, a list sorted in ascending order."""

L, U = 0, len(S)-1

while L <= U:

M = (L + U) // 2

if x == S[M]:

return True

elif x < S[M]:

U = M - 1

else:

L = M + 1

return False

• What’s the execution time here (if N is len(S))?

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 10

Implementing Sets: Ordered Lists

• If we keep list sorted (say in ascending order), can use binary search:

def contains(S, x):

"""Returns true if X is in S, a list sorted in ascending order."""

L, U = 0, len(S)-1

while L <= U:

M = (L + U) // 2

if x == S[M]:

return True

elif x < S[M]:

U = M - 1

else:

L = M + 1

return False

• What’s the execution time here (if N is len(S))? Answer: Θ(lgN)

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 11

Implementing Sets: Insertion/Formation w/ Ordered
List

What’s the time required for this? Assume appending to a list takes
O(1) time (which is true on average).
def toSet(anIterable):

"""Returns an ordered list containing all values in ANITERABLE without

duplicates."""

result = []

for x in anIterable:

L, U = 0, len(result)-1

while L <= U:

M = (L + U) // 2

if x == result[M]:

break

elif x < result[M]:

U = M - 1

else:

L = M + 1

if L > U:

result.insert(L, x)

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 12

Implementing Sets: Insertion/Formation w/ Ordered
List

What’s the time required for this? Assume appending to a list takes
O(1) time (which is true on average).
def toSet(anIterable):

"""Returns an ordered list containing all values in ANITERABLE without

duplicates."""

result = []

for x in anIterable:

L, U = 0, len(result)-1

while L <= U:

M = (L + U) // 2

if x == result[M]:

break

elif x < result[M]:

U = M - 1

else:

L = M + 1

if L > U:

result.insert(L, x)

Answer: Θ(N 2)

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 13

Binary Search Trees

Binary Search Property:

• In a binary tree, each inner node has two children (called “left” and
“right”, typically), but trees are allowed to be empty (no label, no
children).

• A binary search tree (BST) satisfies two other properties:

• All nodes in left subtree of a node have smaller keys.

• All nodes in right subtree of node have larger keys.

• This allows binary search, but in a tree.

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 14

Finding

• Example: Searching for 50 and 49 in a BST representing

{ 16, 19, 25, 30, 42, 50, 65, 91 }

42

19

16 25

30

65

50 91

def contains(S, x):

"""Returns true iff BST S contains x."""

if S == BinTree.empty:

return False

if S.label == x:

return True

elif S.label < x:

return contains(S.right, x)

else:

return contains(S.left, x)

– Dashed boxes show which node labels we look at.

– Number looked at proportional to height of tree.

– What is worst-case time (for a general tree with N nodes)?

– If tree is “bushy,” what is worst-case time?

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 15

Finding

• Example: Searching for 50 and 49 in a BST representing

{ 16, 19, 25, 30, 42, 50, 65, 91 }

42

19

16 25

30

65

50 91

def contains(S, x):

"""Returns true iff BST S contains x."""

if S == BinTree.empty:

return False

if S.label == x:

return True

elif S.label < x:

return contains(S.right, x)

else:

return contains(S.left, x)

– Dashed boxes show which node labels we look at.

– Number looked at proportional to height of tree.

– What is worst-case time (for a general tree withN nodes)? Answer: Θ(N)

– If tree is “bushy,” what is worst-case time?

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 16

Finding

• Example: Searching for 50 and 49 in a BST representing

{ 16, 19, 25, 30, 42, 50, 65, 91 }

42

19

16 25

30

65

50 91

def contains(S, x):

"""Returns true iff BST S contains x."""

if S == BinTree.empty:

return False

if S.label == x:

return True

elif S.label < x:

return contains(S.right, x)

else:

return contains(S.left, x)

– Dashed boxes show which node labels we look at.

– Number looked at proportional to height of tree.

– What is worst-case time (for a general tree withN nodes)? Answer: Θ(N)

– If tree is “bushy,” what is worst-case time? Answer: Θ(lgN)

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 17

Inserting

• Inserting 27

42
*

19

16

*

25
*

30
*

27

65

50 91

def add(S, x):

"""Add X to binary search tree S destructively,

if not already present, returning new tree."""

if S == BinTree.empty:

return BinTree(x)

elif S.label < x:

S.right = add(S.right, x)

else:

S.left = add(S.left, x)

return S

• Starred edges are set (to themselves, unless initially null).

• Again, time proportional to height.

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 18

What Does Python Do?

• Binary trees are just a special case of this algorithm from Lecture
#19:

def tree find(T, disc):

p = disc(T.label)

if p == -1:

return T.label

elif T.is leaf():

return None

else:

return tree find(T.children[p], disc)

where the discrimination function (disc) returns either -1 (when the
label is the target), 0 (for left child), or 1.

• In effect, for its sets (and dictionaries), Python uses another spe-
cialization of this same algorithm, where disc can return values in
an arbitrary range, and the tree is always height 1.

• The discrimination function in this case is called a hashing function.

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 19

Hashing

• Example: the previous set of integers:

{ 16, 19, 25, 30, 42, 50, 65, 91 }

where the hashing function returns the value of the last digit.

50 30 91 42 25 65 16 19

• The tree labels on the leaves can be simple unordered lists of values,
each sharing the same hashed value (their last digit in this case).

• As long as these lists stay small, look-up time is short. In fact, if
there is a constant bound on list size, look-up time is Θ(1).

• When lists get too long, just increase the number of children at the
root.

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 20

More Details

• To allow this to work, must define a hash function for your data.

• The Python way is to add a method hash , which is expected to
return an integer such that the value returned for two objects that
are considered equal (==) are equal.

• Python chooses the number of children (which are called buckets) of
the top node depending on the current number of items in the set
or dictionary represented.

• It then computes a discriminating value between between 0 and N ,
the number of children, by some process such as taking the value of
hash modulo N .

Last modified: Fri Mar 10 13:49:41 2017 CS61A: Lecture #20 21

	Lecture #20: Search and Sets Revisited
	Container Objects and Searching
	Sets
	Sets are Iterables
	Example
	Implementing Sets: Unordered Lists
	Implementing Sets: Insertion/Formation w/ Unordered List
	Implementing Sets: Ordered Lists
	Implementing Sets: Insertion/Formation w/ Ordered List
	Binary Search Trees
	Finding
	Inserting
	What Does Python Do?
	Hashing
	More Details

