
Lecture #19: Complexity and Search Trees
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Fast Growth

• Consider Hackenmax (a function from a test some semesters ago):

def Hakenmax(board, X, Y, N):

if N <= 0:

return 0

else:

return board(X, Y) \

+ max(Hakenmax(board, X+1, Y, N-1),

Hakenmax(board, X, Y+1, N-1))

• Time clearly depends on N. Counting calls to board, C(N),the cost of
calling Hackenmax(board,X,Y,N), is

C(N) =















0, for N ≤ 0
1 + 2C(N − 1), otherwise.

• Using simple-minded expansion,

C(N) = 1+2C(N−1) = 1+2+4C(N−2) = . . . = 1+2+4+8+. . .+2N−1 ∈ Θ(2N).
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Some Useful Properties

• We’ve already seen that Θ(K0N + K1) = Θ(N) (K, k, Ki here and
elsewhere are constants).

• Θ(Nk +Nk−1) = Θ(Nk). Why?

• Θ(|f(N)| + |g(N)|) = Θ(max(|f(N)|, |g(N)|)). Why?

• Θ(logaN) = Θ(logbN). Why? (As a result, we usually use log2N =
lgN for all logarithms.)

• Tricky: why isn’t Θ(f(N) + g(N)) = Θ(max(f(N), g(N)))?
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Searching, Again

• Consider the problem of searching a Python list L for some value:

L: 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

• If we search linearly (left to right), it will take 16 comparisons in
the worst case—the length of L.

• Suppose, however, we could divide our list in two, and somehow fig-
ure out quickly which of the two must contain our target, if it’s to
be found.:

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

L:

• Now the cost of finding our target is at worst

8 + Cost of deciding which list it must be in
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More Slicing and Dicing

• Continuing, we’d get

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

L:

• With a cost of

4 + 2× Cost of deciding which list it must be in

• As you can see, we are forming a tree.

• If we go all the way to the end (single values), we’ll have a cost of

1 + 4× Cost of deciding which list it must be in

Last modified: Wed Mar 8 13:49:48 2017 CS61A: Lecture #19 5



Search Trees

• The preceding slides show the idea behind the search tree.

• The most common example is the binary search tree, where each
decision is between two lists, and the decision criterion is whether
the target is less than, greater than, or equal to a given value:
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• (These trees are a bit different from what we’ve been using, since
they have the possibility of empty trees, such as the missing right
link at the node containing 4.)

• In more general search trees, as in this example, we don’t have to
divide sets of data exactly each time. Also, could have more than
two branches.
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Slow Growth

Consider a problem with this structure:
def tree find(T, disc):

p = disc(T.label)

if p == -1:

return T.label

elif T.is leaf():

return None

else:

return tree find(T.children[p], disc)

Assume that function disc takes (no more than) a constant amount
of time.
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Kinds of Tree

• Assume we are dealing with binary trees (number of children ≤ 2).

• Trees could have various shapes, which we can classify as “shallow”
(or “bushy”) and “stringy.”
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Questions

• How long does the tree find program (search a tree) take in the
worst case on a binary tree (number of children ≤ 2)?

– 1. As a function of D, the depth of the tree?

– 2. As a function of N , the number of keys in the tree?

– 3. As a function of D if the tree is as shallow as possible for the
amount of data?

– 3. As a function of N if the tree is as shallow as possible for the
amount of data?
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