Lecture \#18: Complexity, Memoization

How Fast Is This (I)?

- For this program:

```
for x in range(N):
    if L[x] < 0:
        c += 1
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

```
for x in range(N):
    if L[x] < 0:
        c += 1
        break
```


How Fast Is This (I)?

- For this program:

```
for x in range(N): # Answer: }\Theta(N)\mathrm{ comparisons
    if L[x] < 0:
        c += 1
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

```
for x in range(N):
    if L[x] < 0:
        c += 1
        break
```


How Fast Is This (I)?

- For this program:

```
for x in range(N): # Answer: }\Theta(N)\mathrm{ comparisons
    if L[x] < 0: # Answer: }\Theta(N)\mathrm{ additions
        c += 1
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

```
for x in range(N):
    if L[x] < 0:
        c += 1
        break
```


How Fast Is This (I)?

- For this program:

```
for x in range(N): # Answer: }\Theta(N)\mathrm{ comparisons
    if L[x] < 0: # Answer: }\Theta(N)\mathrm{ additions
        c += 1
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

```
for x in range(N): \# Answer: \(\Theta(N)\) comparisons
    if \(L[x]<0\) :
        c += 1
        break
```


How Fast Is This (I)?

- For this program:

```
for x in range(N): # Answer: }\Theta(N)\mathrm{ comparisons
    if L[x] < 0: # Answer: }\Theta(N)\mathrm{ additions
        c += 1
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

```
for x in range( N\()\) : \# Answer: \(\Theta(N)\) comparisons
    if \(L[x]<0: \quad \#\) Answer: \(\Theta(1)\) additions
        c += 1
        break
```


How Fast Is This (II)?

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f ? (Simplest answer)

```
for }x\mathrm{ in range (2*N):
    f(x, x, x)
    for y in range( }3*N)\mathrm{ :
        f(x, y, y)
        for z in range(4*N):
        f(x, y, z)
```


How Fast Is This (II)?

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f ? (Simplest answer)

```
for x in range(2*N): # Answer: }\Theta(\mp@subsup{N}{}{3}
    f(x, x, x)
    for y in range(3*N):
            f(x, y, y)
            for z in range(4*N):
                f(x, y, z)
```


How Fast Is This (II)?

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f ? (Simplest answer)

```
for x in range(2*N): # Answer: }\Theta(\mp@subsup{N}{}{3}
    f(x, x, x)
    for y in range(3*N):
            f(x, y, y)
            for z in range(4*N):
                f(x, y, z)
```

- Why not $\Theta\left(24 N^{3}+6 N^{2}+2 N\right)$?

How Fast Is This (II)?

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f ? (Simplest answer)

```
for x in range \((2 * \mathrm{~N})\) : \# Answer: \(\Theta\left(N^{3}\right)\)
    \(\mathrm{f}(\mathrm{x}, \mathrm{x}, \mathrm{x})\)
    for \(y\) in range \((3 * N)\) :
            \(\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{y})\)
            for \(z\) in range ( \(4 * N\) ):
                \(f(x, y, z)\)
```

- Why not $\Theta\left(24 N^{3}+6 N^{2}+2 N\right)$? That's correct, but equivalent to the simpler answer of $\Theta\left(N^{3}\right)$.

How Fast Is This (III)?

- What is the complexity of this program, measured by number of calls to f ?

```
for x in range(N):
    for y in range(x):
            f(x, y)
```


How Fast Is This (III)?

- What is the complexity of this program, measured by number of calls to f ?

```
for x in range(N): # Answer }\Theta(\mp@subsup{N}{}{2}
    for y in range(x):
        f(x, y)
```

- This is an arithmetic series $0+1+2+\cdots+N-1=N(N-1) / 2 \in \Theta\left(N^{2}\right)$.

How Fast Is This (IV)?

- What about this one, measured by number of calls to f ?
- How about measured by number of comparisons (<)?

```
z = 0
for x in range(N):
    for y in range(N):
        while z < N:
            f(x, y, z)
            z += 1
```


How Fast Is This (IV)?

- What about this one, measured by number of calls to f ?
- How about measured by number of comparisons (<)?

```
z = 0
for x in range(N): # Answer }\Theta(N)\mathrm{ calls to f.
    for y in range(N):
        while z < N:
            f(x, y, z)
            z += 1
```


How Fast Is This (IV)?

- What about this one, measured by number of calls to f ?
- How about measured by number of comparisons (<)?

```
z = 0
for x in range(N): # Answer }\Theta(N)\mathrm{ calls to f.
    for y in range(N): # Answer }\Theta(\mp@subsup{N}{}{2})\mathrm{ comparisons.
        while z < N:
            f(x, y, z)
            z += 1
```

- In practice, which measure (calls to f or comparisons) would matter?

How Fast Is This (IV)?

- What about this one, measured by number of calls to f ?
- How about measured by number of comparisons (<)?

```
z = 0
for x in range(N): # Answer }\Theta(N)\mathrm{ calls to f.
    for y in range(N): # Answer \Theta(N') comparisons.
        while z < N:
        f(x, y, z)
        z += 1
```

- In practice, which measure (calls to f or comparisons) would matter?
- Depends on size of N, actual cost of f . For large enough N, comparisons will matter more.

Avoiding Redundant Computation

- Consider again the classic Fibonacci recursion:

```
def fib(n):
    if n <= 1:
        return n
    else:
        return fib(n-1) + fib(n-2)
```

- This is tree recursion with a serious speed problem.
- Computation of, say fib(5) computes fib(2) several times, because both fib(4) and fib(3) compute it, and both fib(5) and fib(4) compute fib(3). Computing time grows exponentially.
- The usual iterative version does not have this problem because it saves the results of the recursive calls (in effect) and reuses them.

```
def fib(n):
    if n <= 1: return n
    a, b = 0, 1
    for k in range(2, n+1): a, b = b, a+b
    return b
```


Change Counting

- Consider the problem of determining the number of ways to give change for some amount of money:

```
def count_change(amount, coins = (50, 25, 10, 5, 1))
    """Return the number of ways to make change for AMOUNT, where
    the coin denominations are given by COINS.
    " ""
    if amount == 0:
        return 1
    elif len(coins) == 0 or amount < 0:
        return 0
    else: # = Ways with largest coin + Ways without largest coin
        return count_change(amount-coins[0], coins) + \
            count_change(amount, coins[1:])
```

- Here, we often revisit the same subproblem:
- E.g., Consider making change for 87 cents.
- When we choose to use one half-dollar piece, we have the same subproblem as when we choose to use no half-dollars and two quarters.

Memoizing

- Extending the iterative Fibonacci idea, let's keep around a table ("memo table") of previously computed values.
- Consult the table before using the full computation.
- Example: count_change:

```
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = {}
    def count_change(amount, coins):
            if (amount, coins) not in memo_table:
                memo_table[amount,coins]
            = full_count_change(amount, coins)
            return memo_table[amount,coins]
    def full_count_change(amount, coins):
            # original recursive solution goes here verbatim
            # when it calls count_change, calls memoized version.
    return count_change(amount,coins)
```

- Question: how could we test for infinite recursion?

Optimizing Memoization

- Used a dictionary to memoize count_change, which is highly general, but can be relatively slow.
- More often, we use arrays indexed by integers (lists in Python), but the idea is the same.
- For example, in the count_change program, we can index by amount and by the starting index of the original value of coins that we use.

```
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    # memo_table[amt][k] contains the value computed for
    # count_change(amt, coins[k:])
    memo_table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]
    def count_change(amount, coins):
    if amount < 0: return 0
    elif memo_table[amount][len(coins)] == -1:
            memo_table[amount][len(coins)]
            = full_count_change(amount, coins)
    return memo_table[amount][len(coins)]
```


Order of Calls

- Going one step further, we can analyze the order in which our program ends up filling in the table.
- So consider adding some tracing to our memoized count_change program:

```
memo_table = {}
def count_change(amount, coins):
    ... full_count_change(amount, coins) ...
    return memo_table[amount,coins]
@trace
def full_count_change(amount, coins):
    if amount == 0: return 1
    elif len(coins) == 0 or amount < 0: return 0
    else:
            return count_change(amount, coins[1:]) \
            + count_change(amount-coins[0], coins)
return count_change(amount,coins)
```


Result of Tracing

- Consider count_change(57) (returns only):

```
full_count_change(57, ()) -> 0 # Need shorter 'coins' arguments
full_count_change(56, ()) -> 0 # first.
full_count_change(1, ()) -> 0 # For same coins, need smaller
full_count_change(0, (1,)) -> 1 # amounts first.
full_count_change(1, (1,)) -> 1
full_count_change(57, (1,)) -> 1
full_count_change(2, (5, 1)) -> 1
full_count_change(7, (5, 1)) -> 2
full_count_change(57, (5, 1)) -> 12
full_count_change(7, (10, 5, 1)) -> 2
full_count_change(17, (10, 5, 1)) -> 6
full_count_change(32, (10, 5, 1)) -> 16
full_count_change(7, (25, 10, 5, 1)) -> 2
full_count_change(32, (25, 10, 5, 1)) -> 18
full_count_change(57, (25, 10, 5, 1)) -> 60
full_count_change(7, (50, 25, 10, 5, 1)) -> 2
full_count_change(57, (50, 25, 10, 5, 1)) -> 62

\section*{Dynamic Programming}
- Now rewrite count_change to make the order of calls explicit, so that we needn't check to see if a value is memoized.
- Technique is called dynamic programming (for some reason).
- We start with the base cases ( 0 coins) and work backwards.
```

def count_change(amount, coins = (50, 25, 10, 5, 1)):
memo_table = [[-1] * (len(coins)+1) for i in range(amount+1)]
def count_change(amount, coins):
if amount < 0: return 0
else: return memo_table[amount][len(coins)]
def full_count_change(amount, coins): \# How often called?
... \# (calls count_change for recursive results)
for a in range(0, amount+1):
memo_table[a][0] = full_count_change(a, ())
for k in range(1, len(coins) + 1):
for a in range(1, amount+1):
memo_table[a][k] = full_count_change(a, coins[-k:])
return count_change(amount, coins)

```
```

