
Lecture #18: Complexity, Memoization

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 1

How Fast Is This (I)?

• For this program:

for x in range(N):

if L[x] < 0:

c += 1

• What is the worst-case time, measured in number of comparisons?

• What is the worst-case time, measured in number of additions (+=)?

• How about here?

for x in range(N):

if L[x] < 0:

c += 1

break

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 2

How Fast Is This (I)?

• For this program:

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0:

c += 1

• What is the worst-case time, measured in number of comparisons?

• What is the worst-case time, measured in number of additions (+=)?

• How about here?

for x in range(N):

if L[x] < 0:

c += 1

break

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 3

How Fast Is This (I)?

• For this program:

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0: # Answer: Θ(N) additions

c += 1

• What is the worst-case time, measured in number of comparisons?

• What is the worst-case time, measured in number of additions (+=)?

• How about here?

for x in range(N):

if L[x] < 0:

c += 1

break

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 4

How Fast Is This (I)?

• For this program:

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0: # Answer: Θ(N) additions

c += 1

• What is the worst-case time, measured in number of comparisons?

• What is the worst-case time, measured in number of additions (+=)?

• How about here?

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0:

c += 1

break

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 5

How Fast Is This (I)?

• For this program:

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0: # Answer: Θ(N) additions

c += 1

• What is the worst-case time, measured in number of comparisons?

• What is the worst-case time, measured in number of additions (+=)?

• How about here?

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0: # Answer: Θ(1) additions

c += 1

break

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 6

How Fast Is This (II)?

• Assume that execution of f takes constant time.

• What is the complexity of this program, measured by number of
calls to f? (Simplest answer)

for x in range(2*N):

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 7

How Fast Is This (II)?

• Assume that execution of f takes constant time.

• What is the complexity of this program, measured by number of
calls to f? (Simplest answer)

for x in range(2*N): # Answer: Θ(N3)

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 8

How Fast Is This (II)?

• Assume that execution of f takes constant time.

• What is the complexity of this program, measured by number of
calls to f? (Simplest answer)

for x in range(2*N): # Answer: Θ(N3)

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)

• Why not Θ(24N 3 + 6N 2 + 2N)?

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 9

How Fast Is This (II)?

• Assume that execution of f takes constant time.

• What is the complexity of this program, measured by number of
calls to f? (Simplest answer)

for x in range(2*N): # Answer: Θ(N3)

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)

• Why not Θ(24N 3 + 6N 2 + 2N)? That’s correct, but equivalent to the
simpler answer of Θ(N 3).

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 10

How Fast Is This (III)?

• What is the complexity of this program, measured by number of
calls to f?

for x in range(N):

for y in range(x):

f(x, y)

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 11

How Fast Is This (III)?

• What is the complexity of this program, measured by number of
calls to f?

for x in range(N): # Answer Θ(N2)

for y in range(x):

f(x, y)

• This is an arithmetic series 0+1+2+· · ·+N−1 = N(N−1)/2 ∈ Θ(N 2).

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 12

How Fast Is This (IV)?

• What about this one, measured by number of calls to f?

• How about measured by number of comparisons (<)?

z = 0

for x in range(N):

for y in range(N):

while z < N:

f(x, y, z)

z += 1

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 13

How Fast Is This (IV)?

• What about this one, measured by number of calls to f?

• How about measured by number of comparisons (<)?

z = 0

for x in range(N): # Answer Θ(N) calls to f.

for y in range(N):

while z < N:

f(x, y, z)

z += 1

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 14

How Fast Is This (IV)?

• What about this one, measured by number of calls to f?

• How about measured by number of comparisons (<)?

z = 0

for x in range(N): # Answer Θ(N) calls to f.

for y in range(N): # Answer Θ(N2) comparisons.

while z < N:

f(x, y, z)

z += 1

• In practice, which measure (calls to f or comparisons) would matter?

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 15

How Fast Is This (IV)?

• What about this one, measured by number of calls to f?

• How about measured by number of comparisons (<)?

z = 0

for x in range(N): # Answer Θ(N) calls to f.

for y in range(N): # Answer Θ(N2) comparisons.

while z < N:

f(x, y, z)

z += 1

• In practice, which measure (calls to f or comparisons) would matter?

• Depends on size of N , actual cost of f. For large enough N , compar-
isons will matter more.

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 16

Avoiding Redundant Computation

• Consider again the classic Fibonacci recursion:

def fib(n):

if n <= 1:

return n

else:

return fib(n-1) + fib(n-2)

• This is tree recursion with a serious speed problem.

• Computation of, say fib(5) computes fib(2) several times, because
both fib(4) and fib(3) compute it, and both fib(5) and fib(4)

compute fib(3). Computing time grows exponentially.

• The usual iterative version does not have this problem because it
saves the results of the recursive calls (in effect) and reuses them.

def fib(n):

if n <= 1: return n

a, b = 0, 1

for k in range(2, n+1): a, b = b, a+b

return b

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 17

Change Counting

• Consider the problem of determining the number of ways to give
change for some amount of money:

def count change(amount, coins = (50, 25, 10, 5, 1))

"""Return the number of ways to make change for AMOUNT, where

the coin denominations are given by COINS.

"""

if amount == 0:

return 1

elif len(coins) == 0 or amount < 0:

return 0

else: # = Ways with largest coin + Ways without largest coin

return count change(amount-coins[0], coins) + \

count change(amount, coins[1:])

• Here, we often revisit the same subproblem:

– E.g., Consider making change for 87 cents.

– When we choose to use one half-dollar piece, we have the same
subproblem as when we choose to use no half-dollars and two
quarters.

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 18

Memoizing

• Extending the iterative Fibonacci idea, let’s keep around a table
(“memo table”) of previously computed values.

• Consult the table before using the full computation.

• Example: count change:

def count change(amount, coins = (50, 25, 10, 5, 1)):

memo table = {}

def count change(amount, coins):

if (amount, coins) not in memo table:

memo table[amount,coins]

= full count change(amount, coins)

return memo table[amount,coins]

def full count change(amount, coins):

original recursive solution goes here verbatim

when it calls count change, calls memoized version.

return count change(amount,coins)

• Question: how could we test for infinite recursion?

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 19

Optimizing Memoization

• Used a dictionary to memoize count change, which is highly general,
but can be relatively slow.

• More often, we use arrays indexed by integers (lists in Python), but
the idea is the same.

• For example, in the count change program, we can index by amount

and by the starting index of the original value of coins that we use.

def count change(amount, coins = (50, 25, 10, 5, 1)):

memo table[amt][k] contains the value computed for

count change(amt, coins[k:])

memo table = [[-1] * (len(coins)+1) for i in range(amount+1)]

def count change(amount, coins):

if amount < 0: return 0

elif memo table[amount][len(coins)] == -1:

memo table[amount][len(coins)]

= full count change(amount, coins)

return memo table[amount][len(coins)]

...

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 20

Order of Calls

• Going one step further, we can analyze the order in which our pro-
gram ends up filling in the table.

• So consider adding some tracing to our memoized count change pro-
gram:

memo table = {}

def count change(amount, coins):

... full count change(amount, coins) ...

return memo table[amount,coins]

@trace

def full count change(amount, coins):

if amount == 0: return 1

elif len(coins) == 0 or amount < 0: return 0

else:

return count change(amount, coins[1:]) \

+ count change(amount-coins[0], coins)

return count change(amount,coins)

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 21

Result of Tracing

• Consider count change(57) (returns only):

full count change(57, ()) -> 0 # Need shorter ’coins’ arguments

full count change(56, ()) -> 0 # first.

...

full count change(1, ()) -> 0 # For same coins, need smaller

full count change(0, (1,)) -> 1 # amounts first.

full count change(1, (1,)) -> 1

...

full count change(57, (1,)) -> 1

full count change(2, (5, 1)) -> 1

full count change(7, (5, 1)) -> 2

...

full count change(57, (5, 1)) -> 12

full count change(7, (10, 5, 1)) -> 2

full count change(17, (10, 5, 1)) -> 6

...

full count change(32, (10, 5, 1)) -> 16

full count change(7, (25, 10, 5, 1)) -> 2

full count change(32, (25, 10, 5, 1)) -> 18

full count change(57, (25, 10, 5, 1)) -> 60

full count change(7, (50, 25, 10, 5, 1)) -> 2

full count change(57, (50, 25, 10, 5, 1)) -> 62
Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 22

Dynamic Programming

• Now rewrite count change to make the order of calls explicit, so
that we needn’t check to see if a value is memoized.

• Technique is called dynamic programming (for some reason).

• We start with the base cases (0 coins) and work backwards.

def count change(amount, coins = (50, 25, 10, 5, 1)):

memo table = [[-1] * (len(coins)+1) for i in range(amount+1)]

def count change(amount, coins):

if amount < 0: return 0

else: return memo table[amount][len(coins)]

def full count change(amount, coins): # How often called?

... # (calls count change for recursive results)

for a in range(0, amount+1):

memo table[a][0] = full count change(a, ())

for k in range(1, len(coins) + 1):

for a in range(1, amount+1):

memo table[a][k] = full count change(a, coins[-k:])

return count change(amount, coins)

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 23

	Lecture #18: Complexity, Memoization
	How Fast Is This (I)?
	How Fast Is This (II)?
	How Fast Is This (III)?
	How Fast Is This (IV)?
	Avoiding Redundant Computation
	Change Counting
	Memoizing
	Optimizing Memoization
	Order of Calls
	Result of Tracing
	Dynamic Programming

