
Lecture #18: Complexity, Memoization
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How Fast Is This (I)?

• For this program:

for x in range(N):

if L[x] < 0:

c += 1

• What is the worst-case time, measured in number of comparisons?

• What is the worst-case time, measured in number of additions (+=)?

• How about here?

for x in range(N):

if L[x] < 0:

c += 1

break
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How Fast Is This (I)?

• For this program:

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0:

c += 1

• What is the worst-case time, measured in number of comparisons?

• What is the worst-case time, measured in number of additions (+=)?

• How about here?

for x in range(N):

if L[x] < 0:

c += 1

break
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How Fast Is This (I)?

• For this program:

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0: # Answer: Θ(N) additions

c += 1

• What is the worst-case time, measured in number of comparisons?

• What is the worst-case time, measured in number of additions (+=)?

• How about here?

for x in range(N):

if L[x] < 0:

c += 1

break
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How Fast Is This (I)?

• For this program:

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0: # Answer: Θ(N) additions

c += 1

• What is the worst-case time, measured in number of comparisons?

• What is the worst-case time, measured in number of additions (+=)?

• How about here?

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0:

c += 1

break
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How Fast Is This (I)?

• For this program:

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0: # Answer: Θ(N) additions

c += 1

• What is the worst-case time, measured in number of comparisons?

• What is the worst-case time, measured in number of additions (+=)?

• How about here?

for x in range(N): # Answer: Θ(N) comparisons

if L[x] < 0: # Answer: Θ(1) additions

c += 1

break
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How Fast Is This (II)?

• Assume that execution of f takes constant time.

• What is the complexity of this program, measured by number of
calls to f? (Simplest answer)

for x in range(2*N):

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)
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How Fast Is This (II)?

• Assume that execution of f takes constant time.

• What is the complexity of this program, measured by number of
calls to f? (Simplest answer)

for x in range(2*N): # Answer: Θ(N3)

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)
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How Fast Is This (II)?

• Assume that execution of f takes constant time.

• What is the complexity of this program, measured by number of
calls to f? (Simplest answer)

for x in range(2*N): # Answer: Θ(N3)

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)

• Why not Θ(24N 3 + 6N 2 + 2N)?
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How Fast Is This (II)?

• Assume that execution of f takes constant time.

• What is the complexity of this program, measured by number of
calls to f? (Simplest answer)

for x in range(2*N): # Answer: Θ(N3)

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)

• Why not Θ(24N 3 + 6N 2 + 2N)? That’s correct, but equivalent to the
simpler answer of Θ(N 3).
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How Fast Is This (III)?

• What is the complexity of this program, measured by number of
calls to f?

for x in range(N):

for y in range(x):

f(x, y)
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How Fast Is This (III)?

• What is the complexity of this program, measured by number of
calls to f?

for x in range(N): # Answer Θ(N2)

for y in range(x):

f(x, y)

• This is an arithmetic series 0+1+2+· · ·+N−1 = N(N−1)/2 ∈ Θ(N 2).
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How Fast Is This (IV)?

• What about this one, measured by number of calls to f?

• How about measured by number of comparisons (<)?

z = 0

for x in range(N):

for y in range(N):

while z < N:

f(x, y, z)

z += 1
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How Fast Is This (IV)?

• What about this one, measured by number of calls to f?

• How about measured by number of comparisons (<)?

z = 0

for x in range(N): # Answer Θ(N) calls to f.

for y in range(N):

while z < N:

f(x, y, z)

z += 1

Last modified: Mon Mar 6 15:20:47 2017 CS61A: Lecture #18 14



How Fast Is This (IV)?

• What about this one, measured by number of calls to f?

• How about measured by number of comparisons (<)?

z = 0

for x in range(N): # Answer Θ(N) calls to f.

for y in range(N): # Answer Θ(N2) comparisons.

while z < N:

f(x, y, z)

z += 1

• In practice, which measure (calls to f or comparisons) would matter?
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How Fast Is This (IV)?

• What about this one, measured by number of calls to f?

• How about measured by number of comparisons (<)?

z = 0

for x in range(N): # Answer Θ(N) calls to f.

for y in range(N): # Answer Θ(N2) comparisons.

while z < N:

f(x, y, z)

z += 1

• In practice, which measure (calls to f or comparisons) would matter?

• Depends on size of N , actual cost of f. For large enough N , compar-
isons will matter more.
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Avoiding Redundant Computation

• Consider again the classic Fibonacci recursion:

def fib(n):

if n <= 1:

return n

else:

return fib(n-1) + fib(n-2)

• This is tree recursion with a serious speed problem.

• Computation of, say fib(5) computes fib(2) several times, because
both fib(4) and fib(3) compute it, and both fib(5) and fib(4)

compute fib(3). Computing time grows exponentially.

• The usual iterative version does not have this problem because it
saves the results of the recursive calls (in effect) and reuses them.

def fib(n):

if n <= 1: return n

a, b = 0, 1

for k in range(2, n+1): a, b = b, a+b

return b
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Change Counting

• Consider the problem of determining the number of ways to give
change for some amount of money:

def count change(amount, coins = (50, 25, 10, 5, 1))

"""Return the number of ways to make change for AMOUNT, where

the coin denominations are given by COINS.

"""

if amount == 0:

return 1

elif len(coins) == 0 or amount < 0:

return 0

else: # = Ways with largest coin + Ways without largest coin

return count change(amount-coins[0], coins) + \

count change(amount, coins[1:])

• Here, we often revisit the same subproblem:

– E.g., Consider making change for 87 cents.

– When we choose to use one half-dollar piece, we have the same
subproblem as when we choose to use no half-dollars and two
quarters.
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Memoizing

• Extending the iterative Fibonacci idea, let’s keep around a table
(“memo table”) of previously computed values.

• Consult the table before using the full computation.

• Example: count change:

def count change(amount, coins = (50, 25, 10, 5, 1)):

memo table = {}

def count change(amount, coins):

if (amount, coins) not in memo table:

memo table[amount,coins]

= full count change(amount, coins)

return memo table[amount,coins]

def full count change(amount, coins):

# original recursive solution goes here verbatim

# when it calls count change, calls memoized version.

return count change(amount,coins)

• Question: how could we test for infinite recursion?
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Optimizing Memoization

• Used a dictionary to memoize count change, which is highly general,
but can be relatively slow.

• More often, we use arrays indexed by integers (lists in Python), but
the idea is the same.

• For example, in the count change program, we can index by amount

and by the starting index of the original value of coins that we use.

def count change(amount, coins = (50, 25, 10, 5, 1)):

# memo table[amt][k] contains the value computed for

# count change(amt, coins[k:])

memo table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]

def count change(amount, coins):

if amount < 0: return 0

elif memo table[amount][len(coins)] == -1:

memo table[amount][len(coins)]

= full count change(amount, coins)

return memo table[amount][len(coins)]

...
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Order of Calls

• Going one step further, we can analyze the order in which our pro-
gram ends up filling in the table.

• So consider adding some tracing to our memoized count change pro-
gram:

memo table = {}

def count change(amount, coins):

... full count change(amount, coins) ...

return memo table[amount,coins]

@trace

def full count change(amount, coins):

if amount == 0: return 1

elif len(coins) == 0 or amount < 0: return 0

else:

return count change(amount, coins[1:]) \

+ count change(amount-coins[0], coins)

return count change(amount,coins)
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Result of Tracing

• Consider count change(57) (returns only):

full count change(57, ()) -> 0 # Need shorter ’coins’ arguments

full count change(56, ()) -> 0 # first.

...

full count change(1, ()) -> 0 # For same coins, need smaller

full count change(0, (1,)) -> 1 # amounts first.

full count change(1, (1,)) -> 1

...

full count change(57, (1,)) -> 1

full count change(2, (5, 1)) -> 1

full count change(7, (5, 1)) -> 2

...

full count change(57, (5, 1)) -> 12

full count change(7, (10, 5, 1)) -> 2

full count change(17, (10, 5, 1)) -> 6

...

full count change(32, (10, 5, 1)) -> 16

full count change(7, (25, 10, 5, 1)) -> 2

full count change(32, (25, 10, 5, 1)) -> 18

full count change(57, (25, 10, 5, 1)) -> 60

full count change(7, (50, 25, 10, 5, 1)) -> 2

full count change(57, (50, 25, 10, 5, 1)) -> 62
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Dynamic Programming

• Now rewrite count change to make the order of calls explicit, so
that we needn’t check to see if a value is memoized.

• Technique is called dynamic programming (for some reason).

• We start with the base cases (0 coins) and work backwards.

def count change(amount, coins = (50, 25, 10, 5, 1)):

memo table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]

def count change(amount, coins):

if amount < 0: return 0

else: return memo table[amount][len(coins)]

def full count change(amount, coins): # How often called?

... # (calls count change for recursive results)

for a in range(0, amount+1):

memo table[a][0] = full count change(a, ())

for k in range(1, len(coins) + 1):

for a in range(1, amount+1):

memo table[a][k] = full count change(a, coins[-k:])

return count change(amount, coins)
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