Lecture #17: Complexity and Orders of Growth

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 1



Public-Service Announcement

“Cal Habitat for Humanity is a service club dedicated to giving
back to our wonderful community through volunteering. Between
building houses, assisting with soup kitchens, gardening, and sell-
ing food, we strive to make a positive impact for our neighbor-
hood and beyond. You can commit as little (O) or as many (10,000)
hours as you would like to the club, but we could really use the
help of volunteers such as you. If this seems like something you'd
be interested in, join us at our next meeting on March 7th at 126
Barrows 7pm or visit our website at calhabitat.org.”

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 2



Complexity

e Certain problems take longer than others to solve, or require more
storage space to hold intermediate results.

e We refer to the time complexity or space complexity of a problem.

e But what does it mean to say that a certain program has a particular
complexity?

e What does it mean for an algorithm?
e What does it mean for a problem?

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 3



A Direct Approach

e Well, if you want to know how fast something is, you can time it.

e Python happens to make this easy:

>>> def fib(n):
if n <= 1: return n
else: return fib(n-2) + fib(n-1)

>>> from timeit import repeat

>>> repeat(’fib(10)’, ’from _main _ import fib’, number=5)
[0.000491..., 0.000486..., 0.000487...]

>>> repeat(’fib(20)’, ’from ~main import fib’, number=5)
[0.060..., 0.060..., 0.060...]

>>> repeat(’fib(30)’, ’from _main _ import fib’, number=5)
[7.74..., 7.81..., 7.81...]

e repeat (Stmt, Setup, number=N) says

Execute Setup (a string containing Python code), then execute
Stmt (a string) N times. Repeat this process 3 times and re-
port the time required for each repetition.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 4



A Direct Approach, Continued

e You can also use this from the command line:

$ python3 -m timeit --setup=’from fib import fib’ ’fib(10)’
10000 loops, best of 3: 97 usec per loop

e This command automatically chooses a number of executions of fib
to give a total time that is large enough for an accurate average,
repeats 3 times, and reports the best time.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 b5



Strengths and Problems with Direct Approach

e Good: Gives actual tfimes; answers question completely for given in-
put and machine.

e Bad: Results apply only to tested inputs.
e Bad: Results apply only to particular programs and platforms.

e Bad: Cannot tell us anything about complexity of algorithm or of
problem.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 6



But Can't We Extrapolate?

e Why not try a succession of times, and use that to figure out timing
in general?

...# for t in 5 10 15 20 25 30; do

> echo -n "$t: "

> python3 -m timeit --setup=’from fib import fib’ "fib($t)"
> domne

5: 100000 loops, best of 3: 8.16 usec per loop

10: 10000 loops, best of 3: 96.8 usec per loop

15: 1000 loops, best of 3: 1.08 msec per loop

20: 100 loops, best of 3: 12 msec per loop

25: 10 loops, best of 3: 133 msec per loop

30: 10 loops, best of 3: 1.47 sec per loop

e This looks to be exponential in ¢ with exponent of ~ 1.6.
e But... what if the program special-cases some inputs?

e ...and this still only works for a particular program and machine.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 7



Worst Case, Best Case, Average Case

e To avoid the problem of getting results only for particular inputs,
we usually ask a more general question, such as:

- What is the worst case time to compute f(X) as a function of the
size of X, or

- what is the average case time to compute f(X) over all values of
X (weighted by likelihood).

e Here, "size" depends on the problem: could be magnitude, length (of
list), cardinality (of set), etc.

e Also makes sense to talk about the best case over all inputs of the
same size (but this is not usually interesting) or the average case
over all inputs of the same size, weighted by likelihood (but this is
hard in general).

e But now we seem to have a harder problem than before: how do we
get worst-case times? Doesn't that require testing all cases?

e And when we do, aren't we still sensitive to machine model, compiler,
etc.?

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 8



Example: Linear Search

e Consider the following search function:

def near(L, x, delta):
"""True iff X differs from some member of sequence L by no
more than DELTA."""
for y in L:
if abs(x-y) <= delta:
return True
return False

e There's a lot here we don't know:

- How long is sequence L?

- Where in L is x (if it is)?

- What kind of nhumbers are in L and how long do they take to com-
pare?

- How long do abs and subtract take?

- How long does it take to create an iterator for L and how long
does its _next _operation take?

e So what can we meaningfully say about complexity of near?

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 9



What to Measure?

e If we want general answers, we have to infroduce some "strategic
vagueness.”
e Instead of looking at times, we can consider number of “operations.”
Which?
e The total time consists of
1. Some fixed overhead to start the function and begin the loop.

2. Per-iteration costs: subtraction, abs, __next__, <=

3. Some cost to end the loop.
4. Some cost to return.

e So we can collect total operations into one "fixed-cost operation”
(items 1, 3, 4), plus M(L) "loop operations” (item 2), where M (L) is
the number of items in L up to and including the y that comes within
delta of x (or the length of L if no match).

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 10



What Does an "Operation” Cost?

e But these "operations” are of different kinds and complexities, so
what do we really know?

e Assuming that each operation represents some range of possible
minimum and maximum values (constants), we can say that

min-fixed-cost+ M (L) x min-loop-cost
<

Crear(L)
<

max-fixed-cost+ M (L) x max-loop-cost

where Cie. (L) is the cost of near on a list where the program has
to look at M (L) items.

e In the worst case M (L) == len(L) and in the best, M (L) < 1, so

min-fixed-cost < Cle.r (L) < max-fixed-cost+len(L)x max-loop-cost.

e Simpler, but still clumsy, and the nhumbers are not going to be precise
anyway. Would be nice to have a cleaner notation.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 11



Operation Counts and Scaling

e Instead of getting precise answers in units of physical time, we
therefore settle for a proxy measure that will remain meaningful
over changes in architecture or compiler.

e Choose some operations of interest and count how many times they
occur.

e Examples:

- How many times does fib get called recursively during computa-
tion of fib(N)?
- How many addition operations get performed by fib(N)?

e You can no longer get precise times, but if the operations are well-
chosen, results are proportional to actual time for different values
of N.

e Thus, we look at how computation time scales in the worst case.

e Can compare programs/algorithms on the basis of which scale bet-
ter.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 12



Asymptotic Results

e Sometimes, results for "small” values are not indicative.

e E.g., suppose we have a prime-number tester that contains a look-up
table of the primes up to 1,000,000,000 (about 50 million primes).

e Tests for numbers up to 1 billion will be faster than for larger num-
bers.

e So in general, we tend to ask about asymptotic behavior of pro-
grams: as size of input goes to infinity.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 13



Expressing Approximation

e So, we are looking for measures of program performance that give
us a sense of how computation time scales with size of input.

e And we are further interested in ignoring finite sets of special cases
that a given program can compute quickly.

e Finally, precise worst-case functions can be very complicated, and
the precision is generally not terribly important anyway.

e These considerations motivate the use of order notation to express
how approximations of execution time or space grow.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 14



The Notation

e Suppose that f is a function of one parameter returning real num-
bers.

e We use the notation ©(g) to mean "the set of all one-parameter
functions whose absolute values are eventually bounded above and
below by some constant multiples of g's absolute value.”

e So we can write f € O(g) to mean "whenever n is large enough,
p-lgn)| < |f(n)] <q-lg(n)| for some positive constants p and ¢."

e This notation can be used to express the growth rate of any func-
tion.

e In this course, the functions we are interested in are those that
express the time a computation takes as a function of problem size.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 15



Illustration

e Here, f € O(g) because once z is large enough (x > 1),
always between two multiples of |g(z)|: 0.5-|g(z)| < |f(z)| <

flz)] is
lg()l.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 16



Notational Quirks

e We usually write things like
* 41 € O(z%)

as shorthand for
v x® +1€06(A\x:z?)

e Adding or multiplying sets of functions produces sets of functions.
Thus, z° + ©(g) means “the set of functions of z returning z* + h(z),
where h € O(g)."

e Iprefer f € O(g) or f(z) € 2°+0(g(x)) to the traditional f = O(g) or
f(x) = 2*+0O(g(x)), because '=" makes no formal sense here (the left
side denotes a function and the right denotes a set of functions.)

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 17



Using Asymptotic Estimates

e Going back to the near function,
min-fixed-cost + M(L) x min-loop-cost
Chear(L)

<
< max-fixed-cost+ M (L) x max-loop-cost

where M (L) is the number of items in L that are examined before
the loop terminates.

e In the worst case, M (L) = N, where N is the length of L.
e So, letting CY° (N) mean "the worst-case value of Ce.(L) when N

near

is the length of L:"

min-fixed-cost+ N x min-loop-cost

< Chear(V)
<

max-fixed-cost+ N x max-loop-cost
e Claim: we can state this more cleanly as

O (N) € O(N).

near

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 18



Using Asymptotic Estimates

e Claim that
min-fixed-cost+ N x min-loop-cost
< Chear(V)
< max-fixed-cost+ N x max-loop-cost
means that
Crear(N) € O(N).
Why?

e Well, if we ignore the two fixed costs (assume they are 0), we obvi-
ously fit the definition, since for N >0,

p-N<C.(N)<q-N,
where p is min-loop-cost and ¢ is max-loop-cost.
e Tt's easy to see that by tweaking ¢ up a bit—e.qg., to ¢/, where
q¢ = q + max-fixed-cost

we can arrange that when N is big enough (N > 1 for this particular
p'), we cover the necessary range.

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 19



Typical O(-) Estimates from Programs

Bound on Example
Worst-Case Time
()(1) x += L[c]
()(kgfq) while N > O:
x, N=x+ L[N], N // 2
()(pq) for ¢ in range(N):
x += L[c]
()(pqlg;pJ) def sort(L): # Define N = len(L)
M = len(L) // 2
if M == 0: return L # Assume merge takes O(N)
else: return merge(sort(L[:M]), sort(L[M:]))
()(pJQ) for ¢ in range(N): # Executed N times.
for d in range(N): # Executed N times for each c
x += L[c] [d] # Executed N x N times.
()(QAU def longMax(A, L, U): # Define N = U-L; L<=U

if L == U: return A[L]
else: return max(longMax(A, L+1, U),
longMax (A, L, U-1))

Last modified: Fri Mar 3 19:12:24 2017 CS61A: Lecture #17 20



Some Intuition on Meaning of Growth

e How big a problem can you solve in a given fime?

e In the following table, left column shows time in microseconds to
solve a given problem as a function of problem size N (assuming
perfect scaling and that problem size 1 takes 1usec).

e Entries show the size of problem that can be solved in a second,
hour, month (31 days), and century, for various relationships be-
tween time required and problem size.

Time (usec) for

Max N Possible in

problem size N | 1second 1 hour 1 month 1 century
lo N 1()300000 101000000000 108-10” 109-1014
N 100 3.6 - 10° 2.7 10" 3.2-100
Nlg N 63000 1.3-108 7.4 - 1010 6.9 - 103
N? 1000 60000 1.6 - 106 5.6 - 107
N3 100 1500 14000 150000
oN 20 32 41 51

Last modified: Fri Mar 3 19:12:24 2017

CS61A: Lecture #17 21



	Lecture #17: Complexity and Orders of Growth
	Public-Service Announcement
	Complexity
	A Direct Approach
	A Direct Approach, Continued
	Strengths and Problems with Direct Approach
	But Can't We Extrapolate?
	Worst Case, Best Case, Average Case
	Example: Linear Search
	What to Measure?
	What Does an ``Operation'' Cost?
	Operation Counts and Scaling
	Asymptotic Results
	Expressing Approximation
	The Notation
	Illustration
	Notational Quirks
	Using Asymptotic Estimates
	Using Asymptotic Estimates
	Typical () Estimates from Programs
	Some Intuition on Meaning of Growth

