Lecture #15: Generic Functions and Expressivity

Last modified: Wed Mar 115:51:48 2017 CS61A: Lecture #16 1

Generic Programming

e Consider the function find:

def find(L, x, k):
"""Return the index in L of the kth occurrence of x (k>=0),
or None if there isn’t one."""

for i in range(len(L)):
if L[i] == x:
if k == 0:
return i
K -= 1

e This same function works on lists, tuples, strings, and (if the keys
are consecutive integers) dicts.

o In fact, it works for any list L for which len and indexing work as
they do for lists and tuples.

e That is, find is generic in the type of L.

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 2

Duck Typing

o A statically typed language (such as Java) requires that you specify
a type for each variable or parameter, one that specifies all the
operations you intend to use on that variable or parameter.

e To create a generic function, therefore, your parameters’ types
must be subtypes of some particular interface.

e You can do this in Python, too, but it is not a requirement.

o In fact, our find function will work on any object that has __len__
and __getitem_, regardless of the object's type.

o This property is sometimes called duck typing: “This parameter must
be a duck, and if it walks like a duck and quacks like a duck, we'll say
it is a duck.”

Last modified: Wed Mar 115:51:48 2017 CS61A: Lecture #16 3

Example: The _str_ Method

e When the print function prints a value, it calls the __str_ () method
to find out what string to print.

e The constructor for the string type, str, does the same thing.

e Again, you can define your own __str__ on a class to control this
behavior. (The default is just to call __repr_)

>>> class rational:
def init (self, num, den):
def _str (self):
if self.numer() == 0: return "0"
elif self.denom() == 1: return str(self.numer())
else: return "{0}/{1}".format(self.numer(), self.denom())
def repr (self):
return "rational({}, {})".format(self.numer(), self.denom())

>>> print(rational(3,4))
3/4

>>> rational(3,4)
rational(3, 4)

>>> print(rational(5, 1))
5

Last modified: Wed Mar 115:51:48 2017 CS61A: Lecture #16 5

Example: The _repr__ Method

e When the interpreter prints the value of an expression, it must first
convert that value to a (printable) string.

e To do so, it calls the __repr__() method of the value, which is sup-
posed to return a string that suggests how you'd create the value in
Python.

>>> "Hello"

’Hello’

>>> print (repr("Hello"))

’Hello’

>>> repr("Hello") # What does the interpreter print?

e (As a convenience, the built-in function repr(x) calls the _repr _
method.)

e User-defined classes can define their own __repr_ method to con-
trol how the interpreter prints them.

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 4

Aside: A Small Technical Issue

e str, repr, and print all call the methods __str__and __repr__, ighor-
ing any instance variables of those names.

e For example,

>>> v = rational(3, 4)

>>> v._str__

<bound method rational._str__ of ...>
>>> v.__str__ = lambda x: "FOO!"

>>> # __str__ is now an instance variable of v as well as a
>>> # a method of class rational.

>>> v._str

<function <lambda> at ...>

>>> str(v)

3/4

>>> c._str ()

’FO0!”’

o How could you implement str to do this?
e Hint: As in the homework, type (x) returns the class of x.

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 6

Other Generic Method Names

Just as defining

str__allows you to specify how your class is printed,

Python has many other generic connections to its syntax, which allow
programmers great flexibility in expressing things. For example,

Method Implements
__getitem__(S, k) S[k]

__setitem__(S, k, v) S[k] = v

__len__(8) len(S)

__bool__(8) bool(8) True or False
__add__(8, x) S + x

__sub__(8, x) S - x

__mul__(S, x) S * x

__ge__(8, x) S >=x
__getattr__(S, ’N’) S.N Attributes
__setattr__(S, °N’, v) |[S.N = v

Last modified: Wed Mar 1 15:51:48 2017

CS61A: Lecture #16 7

Iterators

and Iterables

e The for statement is actually a generic control construct with the

following meaning:

tmp_iter

try:
whil

for x in C:
S

except S
pass

= iter(C)

e True:

x = tmp_iter._next_()
S

toplteration:

o Types for which iter works are called iterable, and those that im-
plement _next__ are iterators (returned by calling iter on an iter-

able).

e The built-in iter function first tries calling the method __iter__on
the object, so if you define a class containing def

you'll have an iterable class.

iter (self):...

e Tnaddition, a type is considered iterable if it implements _getitem_,
the method that implements the a[...] operator.

Last modified: Wed Mar 1 15:51:48 2017

CS61A: Lecture #16 8

The Many Uses of Iterables

o Python cleanly integrates iterables into many contexts, showing the
power of a good abstraction.

e The obvious:

for x in anlterable:

L = [£(x) for x in anIterable]

o Many functions take iterables as arguments rather than just lists:

list(anIterable)
set(anlterable)
map(f, anlterable)
sum(anIterable)
max(anIterable)
all(anIterable)

Last modified: Wed Mar 1 15:51:48 2017

CS61A: Lecture #16 9

	Lecture #15: Generic Functions and Expressivity
	Generic Programming
	Duck Typing
	Example: The __repr__ Method
	Example: The __str__ Method
	Aside: A Small Technical Issue
	Other Generic Method Names
	Iterators and Iterables
	The Many Uses of Iterables

