
Lecture #15: Generic Functions and Expressivity

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 1

Generic Programming

• Consider the function find:

def find(L, x, k):

"""Return the index in L of the kth occurrence of x (k>=0),

or None if there isn’t one."""

for i in range(len(L)):

if L[i] == x:

if k == 0:

return i

k -= 1

• This same function works on lists, tuples, strings, and (if the keys
are consecutive integers) dicts.

• In fact, it works for any list L for which len and indexing work as
they do for lists and tuples.

• That is, find is generic in the type of L.

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 2

Duck Typing

• A statically typed language (such as Java) requires that you specify
a type for each variable or parameter, one that specifies all the
operations you intend to use on that variable or parameter.

• To create a generic function, therefore, your parameters’ types
must be subtypes of some particular interface.

• You can do this in Python, too, but it is not a requirement.

• In fact, our find function will work on any object that has len

and getitem , regardless of the object’s type.

• This property is sometimes called duck typing: “This parameter must
be a duck, and if it walks like a duck and quacks like a duck, we’ll say
it is a duck.”

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 3

Example: The repr Method

• When the interpreter prints the value of an expression, it must first
convert that value to a (printable) string.

• To do so, it calls the repr () method of the value, which is sup-
posed to return a string that suggests how you’d create the value in
Python.

>>> "Hello"

’Hello’

>>> print(repr("Hello"))

’Hello’

>>> repr("Hello") # What does the interpreter print?

• (As a convenience, the built-in function repr(x) calls the repr

method.)

• User-defined classes can define their own repr method to con-
trol how the interpreter prints them.

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 4

Example: The str Method

• When the print function prints a value, it calls the str () method
to find out what string to print.

• The constructor for the string type, str, does the same thing.

• Again, you can define your own str on a class to control this
behavior. (The default is just to call repr)

>>> class rational:

... def init (self, num, den): ...

... def str (self):

... if self.numer() == 0: return "0"

... elif self.denom() == 1: return str(self.numer())

... else: return "{0}/{1}".format(self.numer(), self.denom())

... def repr (self):

... return "rational({}, {})".format(self.numer(), self.denom())

...

>>> print(rational(3,4))

3/4

>>> rational(3,4)

rational(3, 4)

>>> print(rational(5, 1))

5

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 5

Aside: A Small Technical Issue

• str, repr, and print all call the methods str and repr , ignor-
ing any instance variables of those names.

• For example,

>>> v = rational(3, 4)

>>> v. str

<bound method rational. str of ...>

>>> v. str = lambda x: "FOO!"

>>> # str is now an instance variable of v as well as a

>>> # a method of class rational.

>>> v. str

<function <lambda> at ...>

>>> str(v)

3/4

>>> c. str ()

’FOO!’

• How could you implement str to do this?

• Hint: As in the homework, type(x) returns the class of x.

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 6

Other Generic Method Names

Just as defining str allows you to specify how your class is printed,
Python has many other generic connections to its syntax, which allow
programmers great flexibility in expressing things. For example,

Method Implements
__getitem__(S, k) S[k]

__setitem__(S, k, v) S[k] = v

__len__(S) len(S)

__bool__(S) bool(S) True or False
__add__(S, x) S + x

__sub__(S, x) S - x

__mul__(S, x) S * x

__ge__(S, x) S >= x

...

__getattr__(S, ’N’) S.N Attributes
__setattr__(S, ’N’, v) S.N = v

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 7

Iterators and Iterables

• The for statement is actually a generic control construct with the
following meaning:

for x in C:

S

tmp iter = iter(C)

try:

while True:

x = tmp iter. next ()

S

except StopIteration:

pass

• Types for which iter works are called iterable , and those that im-
plement next are iterators (returned by calling iter on an iter-
able).

• The built-in iter function first tries calling the method iter on
the object, so if you define a class containing def iter (self):...,
you’ll have an iterable class.

• In addition, a type is considered iterable if it implements getitem ,
the method that implements the a[...] operator.

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 8

The Many Uses of Iterables

• Python cleanly integrates iterables into many contexts, showing the
power of a good abstraction.

• The obvious:
for x in anIterable: ...

L = [f(x) for x in anIterable]

• Many functions take iterables as arguments rather than just lists:

list(anIterable)

set(anIterable)

map(f, anIterable)

sum(anIterable)

max(anIterable)

all(anIterable)

Last modified: Wed Mar 1 15:51:48 2017 CS61A: Lecture #16 9

	Lecture #15: Generic Functions and Expressivity
	Generic Programming
	Duck Typing
	Example: The __repr__ Method
	Example: The __str__ Method
	Aside: A Small Technical Issue
	Other Generic Method Names
	Iterators and Iterables
	The Many Uses of Iterables

