
Lecture #14: OOP

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 1

Some Useful Annotations: @staticmethod

• We saw annotations earlier, as examples of higher-order functions.

• For classes, Python defines a few specialized to methods.

• The @staticmethod annotation denotes a class method (i.e., ordinary
function), which does not apply to any particular object.

class Account:

total deposits = 0

...

@staticmethod

def total deposits(): # No ’self’ needed.

return Account. total deposits

• Now we can write
acct = Account(...)

acct.total deposits() # Total deposits in bank.

Account.total deposits() # Ditto

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 2

Some Useful Annotations: @property

• I’ve said that generally, method calls are the preferred way for
clients to access an object (rather than direct access to instance
variables.)

• This practice allows the class implementor to hide details of imple-
mentation.

• Still it’s cumbersome to have to say, e.g., aPoint.getX() rather than
aPoint.x, and aPoint.setX(v) rather than aPoint.x = v.

• To alleviate this, Python introduced the idea of a property object.

• When a property object is an attribute of an object, it calls a func-
tion when it is fetched from its containing object by dot notation.

• The property object can also be defined to call a different function
on assignment to the attribute.

• Attributes defined as property objects are called computed or man-
aged attributes.

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 3

Properties (Long Form)

class rational:

def init (self, num, den):

g = gcd(num, den)

self. num, self. den = num/g, den/g

def getNumer(self): return self. num

def setNumer(self, val): self. num = val / gcd(val, self. denom)

numer = property(getNumer, setNumer)

Alternatively,

numer = property(getNumer).setter(setNumer)

• As a result,

>>> a = rational(3, 4)

>>> a.numer # Calls a. getNumer()

3

>>> a.numer = 5 # Calls a. setNumer(5)

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 4

Properties (Short Form)

The built-in property function is also a decorator:
class rational:

...

@property

def numer(self): return self. num

Equivalent to

def TMPNAME(self): return self. num

numer = property(TMPNAME)
where TMPNAME is some identifier not used anywhere else.

@numer.setter

def numer(self, val):

Equivalent to

def TMPNAME(self, val): self. num = val / gcd(val, self. denom)

numer = numer.setter(TMPNAME)

This is a bit obscure, but the idea is that every property object has a
setter method that turns out a new property object that governs both
getting and setting of a value.

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 5

Recap of Object-Based Features

>>> class T:

... marked = False

... def init (self, x): self. value = x

... def value(self): return self. value

... def mark(self): self. marked = True

... @staticmethod

... def setMark(x): T. marked = x

Statements T._marked T._value t1._marked t1._value t2._marked t2._value

t1.value() t2.value()

False <ERROR>

t1 = T(3)

t2 = T(5)

False <ERROR> False 3 False 5

t1.mark()

False <ERROR> True 3 False 5

T.setMark(0)

0 <ERROR> True 3 0 5

t1.setMark([])

[] <ERROR> True 3 [] 5

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 6

Inheritance

• Classes are often conceptually related, sharing operations and be-
havior.

• One important relation is the subtype or “is-a” relation.

• Examples: A car is a vehicle. A square is a plane geometric figure.

• When multiple types of object are related like this, one can often
define operations that will work on all of them, with each type ad-
justing the operation appropriately.

• In Python (like C++ and Java), a language mechanism called inheri-
tance accomplishes this.

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 7

Example: Geometric Plane Figures

• Want to define a collection of types that represent polygons (squares,
trapezoids, etc.).

• First, what are the common characteristics that make sense for all
polygons?

class Polygon:

def is simple(self):

"""True iff I am simple (non-intersecting)."""

def area(self): ...

def bbox(self):

"""(xlow, ylow, xhigh, yhigh) of bounding rectangle."""

def num sides(self): ...

def vertices(self):

"""My vertices, ordered clockwise, as a sequence

of (x, y) pairs."""

def describe(self):

"""A string describing me."""

• The point here is mostly to document our concept of Polygon, since
we don’t know how to implement any of these in general.

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 8

Partial Implementations

• Even though we don’t know anything about Polygons, we can give de-
fault implementations.

class Polygon:

def is simple(self): raise NotImplemented

def area(self): raise NotImplemented

def vertices(self): raise NotImplemented

def bbox(self):

V = self.vertices()

X = [v[0] for v in V]

Y = [v[1] for v in V]

return (min(X), min(Y), max(X), max(Y))

def num sides(self): return len(self.vertices())

def describe(self):

return "A polygon with vertices {0}".format(self.vertices())

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 9

Specializing Polygons

• At this point, we can introduce simple (non-intersecting) polygons,
for which there is a simple area formula.

class SimplePolygon(Polygon):

def is simple(self): return True

def area(self):

a = 0.0

V = self.vertices()

for i in range(len(V)-1):

a += V[i][0] * V[i+1][1] - V[i+1][0]*V[i][1]

return -0.5 * a

• This says that a SimplePolygon is a kind of Polygon, and that the
attributes of Polygon are to be inherited by SimplePolygon.

• So far, none of these Polygons are much good, since they have no
defined vertices.

• We say that Polygon and SimplePolygon are abstract types.

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 10

A Concrete Type

• Finally, a square is a type of simple Polygon:

class Square(SimplePolygon):

def init (self, xll, yll, side):

"""A square with lower-left corner at (xll,yll) and

given length on a side."""

self. x = xll

self. y = yll

self. s = side

def vertices(self):

x0, y0, s = self. x, self. y, self. s

return ((x0, y0), (x0, y0+s), (x0+s, y0+s),

(x0+s, y0), (x0, y0))

def describe(self):

return "A {0}x{0} square with lower-left corner ({1},{2})" \

.format(self. s, self. x, self. y)

• Don’t have to define area,, etc., since the defaults work.

• We chose to override the describe method to give a more specific
description.

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 11

(Simple) Inheritance Explained

• Inheritance (in Python) works like nested environment frames.

Polygon:

is simple: . . .
area: . . .

bbox: . . .
num sides: . . .
vertices: . . .

describe: . . .

is simple: . . .
area: . . .

init : . . .
vertices: . . .

describe: . . .

SimplePolygon:

Square:

x: 5
y: 6
s: 10

Square(5,6,10)

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 12

Do You Understand the Machinery?

>>> class Parent:

... def f(s): # No, you don’t have to call it ’self’!

... print("Parent.f")

... def g(s):

... s.f()

>>> class Child(Parent):

... def f(me):

... print("Child.f")

>>> aChild = Child()

>>> aChild.g()

What does Python print?

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 13

Multiple Inheritance

• A class describes some set attributes.

• One can imagine assembling a set of attributes from smaller clusters
of related attributes.

• For example, many kinds of object represent some kind of collection
of values (e.g., lists, tuples, files).

• Built-in kinds of collection have specialized functions representing
them as strings (so lists print as [...]).

• When we introduce our own notion of collection, we can do this as
well, by writing a suitable str (self)method, which is what print
calls to print things.

• Many of these methods are similar; perhaps we can consolidate.

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 14

Multiple Inheritance Example

class Printable:

"""A mixin class for creating a str method that prints

a sequence object. Assumes that the type defines getitem ."""

def left bracket(self):

return type(self). name + "["

def right bracket(self):

return "]"

def str (self):

result = self.left bracket()

for i in range(len(self) - 1):

result += str(self[i]) + ", "

if len(self) > 0:

result += str(self[-1])

return result + self.right bracket()

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 15

Multiple Inheritance Example

• I define a new kind of “sequence with benefits” and would like a
distinct way of printing it.

class MySeq(list, Printable):

...

• MySeqs will print like

MySeq[1, 2, 3]

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 16

Super

• Sometimes we just want to add to or use the behavior of our parent.

• For example, suppose we have a class that mogrifies:

class Transformer:

def mogrify(self):

"""Do something"""

• We want another type that counts how many time mogrify is called:

class CountedTransformer(Transformer):

"""A Transformer that counts the number of calls to its

mogrify method."""

def init (self): self. count = 0

def mogrify(self):

self. count += 1

return Transformer.mogrify(self) # Calls Transformer’s method

Or the "official way": return super().mogrify()

def count(self):

return self. count

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 17

Example: “Memoization”

• Suppose we have

class Evaluator:

def value(self, x):

some expensive computation that depends only on x

class FastEvaluator(Evaluator):

def init (self):

self. memo table = {} # Maps arguments to results

def value(self, x):

"""A memoized value computation"""

if x not in self. memo table:

self. memo table[x] = Evaluator.value(self, x)

return self. memo table[x]

• FastEvaluator.value must call the .value method of its base (su-
per) class, but we can’t just say self.value(x), since that gives an
infinite recursion.

Last modified: Mon Feb 27 15:56:12 2017 CS61A: Lecture #14 18

	Lecture #14: OOP
	Some Useful Annotations: @staticmethod
	Some Useful Annotations: @property
	Properties (Long Form)
	Properties (Short Form)
	Recap of Object-Based Features
	Inheritance
	Example: Geometric Plane Figures
	Partial Implementations
	Specializing Polygons
	A Concrete Type
	(Simple) Inheritance Explained
	Do You Understand the Machinery?
	Multiple Inheritance
	Multiple Inheritance Example
	Multiple Inheritance Example
	Super
	Example: ``Memoization''

