
Lecture #13: Objects and Classes
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Data Abstraction vs. Function Abstraction

• Functions perform computations; their specifications abstract from
possible implementations of a particular computation.

• In the old days, programs tended to be organized around functions
or modules comprising related functions. The data were just the
operands.

• Now we tend to organize instead around the data—around objects
or types (classes) of objects.

• Objects have state , which is accessed and manipulated by means of
attributes.

• The set of attributes and their behavior is analogous to the syntac-
tic and semantic specification of a function.

• In previous lectures, we’ve seen standard Python objects and ways
to get (in effect) new kinds of objects using functions and non-local
variables. We’ve defined data types using them by defining a set of
functions to be used to construct, query, and modify them.

• Python also provides a standard way to gather together state and
attributes of new types of date: classes.
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Extending the Mutable Objects: Classes

• In languages such as Python, Java, and C++, an object is an instance
of a class; the class is called the object’s type.

• The Python class statement defines new classes or types, creating
new, vaguely dictionary-like varieties of object.
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Simple Classes: Bank Account

# type name

class Account:

# constructor method

def init (self, initial balance):

self. balance = initial balance

def balance(self): # instance method

# instance variable:

return self. balance

def deposit(self, amount):

if amount < 0:

raise ValueError("negative deposit")

self. balance += amount

def withdraw(self, amount):

if 0 <= amount <= self. balance:

self. balance -= amount

else: raise ValueError("bad withdrawal")

>>> mine = Account(1000)

>>> mine.deposit(100)

>>> mine.balance()

1100

>>> mine.withdraw(200)

>>> mine.balance()

900
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Class Concepts

• Just as def defines functions and allows us to extend Python with
new operations, class defines types and allows us to extend Python
with new kinds of data.

• What do we want out of a class?

– A way of defining named new types of data.

– A means of defining and accessing state for these objects.

– A means of defining operations specific to these objects.

∗ In particular, an operation for initializing the state of an ob-
ject.

– A means of creating new objects.
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Class Machinery

• The Account type illustrated how we do each of these

class Account: # Define named new type

def init (self, initial balance): # How to initialize

self. balance = initial balance # Create/modify state

def balance(self): # Define new operation on Accounts

return self. balance # Access state of an Account

...

myAccount = Account(1000) # Create a new Account object,

print(myAccount.balance()) # Operate on an Account object.

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 6



Attribute Access

• In general, the notation X.Y means “The value named Y in the object
pointed to by X.”

• Unlike C++ or Java, Python takes a very dynamic approach.

• Classes and class instances behave rather like environment frames.

• Given a pointer to some object, obj,

– obj.x = value looks for a definition of x in the object refer-
enced by obj, creating one if it doesn’t exist, and assigning value
to it.

– When not being assigned to, obj.x returns the definition of x in
the object referenced by obj, if any,

– . . . and if there is no such definition, it returns the value defined
for x in the class itself, if any.
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Modeling Attributes in Python

class Account:

total deposits = 0

def init (...):

self. balance = ...

Account. total deposits = ...

acct1 = Account(1000)

acct2 = Account(10000)

acct1.deposit(300)

• Curved boxes are objects.

• Flat-bottomed boxes are class
objects.

• ‘x.y’: look for ‘y’ starting at ‘x’

Account:

total deposits: 11300
init : . . .

deposit: . . .

withdraw: . . .

acct1:

acct2:

balance: 1300

balance: 10000

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 8



Assigning to Attributes

• Assigning to an attribute of an object (including a class) is like as-
signing to a local variable: it creates a new binding for that attribute
in the object selected from (i.e., referenced by the expression on
the left of the dot).

>>> class Value:

... value = 0

...

>>> val1 = Value()

>>> val2 = Value()

>>> val2.value = 3

>>> val1.value

0

>>> Value.value

0

>>> val2.value

3

Value: value: 0

val1:

val2: value: 3
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Attributes of Classes

• In Python classes themselves are objects.

• (You might well ask “What is the type of a class?” Answer: a builtin
class called type, whose type is itself.)

• Therefore, classes themselves have attributes.

• Assignments and defs immediately inside a class define class at-
tributes.

• Since obj.x looks for x in the class of obj if it doesn’t find it in obj

itself, the attributes defined in a class provide default values for
attributes of the object that are instances of the class.
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Methods

• Consider
>>> class Foo:

... def set(self, x):

... self.value = x

>>> aFoo = Foo(10)

• The access aFoo.set returns the set method defined in Foo (since
we haven’t set it in aFoo.

• However, in this particular case (function retrieved from the class
of an object), what gets returned is a little different.

>>> aFoo.set

<bound method Foo.set of ...>

• A bound method is an ordinary function that has its first parameter
“pre-bound” to a particular value—in this case to aFoo.

>>> aFoo.set(13) # First parameter (self) of set is aFoo, x is 13.

>>> aFoo.value

13

• The effect is (almost) the same as

>>> Foo.set(aFoo, 13)
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Class Attributes in Python

• Sometimes, a quantity applies to a type as a whole, not a specific
instance.

• For example, with Accounts, you might want to keep track of the
total amount deposited from all Accounts.

• This is an example of something confusing called a class attribute.
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Class Attribute Example

class Account:

total deposits = 0 # Define/initialize a class attribute

def init (self, initial balance):

self. balance = initial balance

Account. total deposits += initial balance

def deposit(self, amount):

self. balance += amount

Account. total deposits += amount

def total deposits(): # Define a class method.

return Account. total deposits

>>> acct1 = Account(1000)

>>> acct2 = Account(10000)

>>> acct1.deposit(300)

>>> Account.total deposits()

11300
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Classes and Operators

• Many standard operators defined in Python are essentially “syntac-
tic sugar” for method calls.

• Examples:

– x+y becomes x. add (y) if add is defined for x.

– x[k] becomes x. getitem (k).

– x[k] = 3 becomes x. setitem (k, 3).

– len(x) calls x. len ().

– repr(x) calls x. repr (), which is what the interpreter uses to
print the value of expressions you type.
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Class Machinery: Summary

• Classes have attributes, created by assignment statements and defs

in the class body.

• Function-values attributes of classes are called methods.

• Classes beget objects called instances, created by “calling” the class:
Account(1000).

• Each such Account object initially shares the attributes of its class.

• Attributes can be accessed using object.attribute notation.

• A method call mine.deposit(100) is essentially the same as
Account.deposit(mine, 100).

• By convention, we call the first argument of a method self to indi-
cate that it is the object from which we got the method.

• When an object is created, the special init method is called on
it first.

• Assigning to an attribute of an object (a.b = v) gives that object
its own attribute (not shared with the class), if it doesn’t have it
already.
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