
Lecture #13: Objects and Classes

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 1

Data Abstraction vs. Function Abstraction

• Functions perform computations; their specifications abstract from
possible implementations of a particular computation.

• In the old days, programs tended to be organized around functions
or modules comprising related functions. The data were just the
operands.

• Now we tend to organize instead around the data—around objects
or types (classes) of objects.

• Objects have state , which is accessed and manipulated by means of
attributes.

• The set of attributes and their behavior is analogous to the syntac-
tic and semantic specification of a function.

• In previous lectures, we’ve seen standard Python objects and ways
to get (in effect) new kinds of objects using functions and non-local
variables. We’ve defined data types using them by defining a set of
functions to be used to construct, query, and modify them.

• Python also provides a standard way to gather together state and
attributes of new types of date: classes.

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 2

Extending the Mutable Objects: Classes

• In languages such as Python, Java, and C++, an object is an instance
of a class; the class is called the object’s type.

• The Python class statement defines new classes or types, creating
new, vaguely dictionary-like varieties of object.

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 3

Simple Classes: Bank Account

type name

class Account:

constructor method

def init (self, initial balance):

self. balance = initial balance

def balance(self): # instance method

instance variable:

return self. balance

def deposit(self, amount):

if amount < 0:

raise ValueError("negative deposit")

self. balance += amount

def withdraw(self, amount):

if 0 <= amount <= self. balance:

self. balance -= amount

else: raise ValueError("bad withdrawal")

>>> mine = Account(1000)

>>> mine.deposit(100)

>>> mine.balance()

1100

>>> mine.withdraw(200)

>>> mine.balance()

900

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 4

Class Concepts

• Just as def defines functions and allows us to extend Python with
new operations, class defines types and allows us to extend Python
with new kinds of data.

• What do we want out of a class?

– A way of defining named new types of data.

– A means of defining and accessing state for these objects.

– A means of defining operations specific to these objects.

∗ In particular, an operation for initializing the state of an ob-
ject.

– A means of creating new objects.

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 5

Class Machinery

• The Account type illustrated how we do each of these

class Account: # Define named new type

def init (self, initial balance): # How to initialize

self. balance = initial balance # Create/modify state

def balance(self): # Define new operation on Accounts

return self. balance # Access state of an Account

...

myAccount = Account(1000) # Create a new Account object,

print(myAccount.balance()) # Operate on an Account object.

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 6

Attribute Access

• In general, the notation X.Y means “The value named Y in the object
pointed to by X.”

• Unlike C++ or Java, Python takes a very dynamic approach.

• Classes and class instances behave rather like environment frames.

• Given a pointer to some object, obj,

– obj.x = value looks for a definition of x in the object refer-
enced by obj, creating one if it doesn’t exist, and assigning value
to it.

– When not being assigned to, obj.x returns the definition of x in
the object referenced by obj, if any,

– . . . and if there is no such definition, it returns the value defined
for x in the class itself, if any.

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 7

Modeling Attributes in Python

class Account:

total deposits = 0

def init (...):

self. balance = ...

Account. total deposits = ...

acct1 = Account(1000)

acct2 = Account(10000)

acct1.deposit(300)

• Curved boxes are objects.

• Flat-bottomed boxes are class
objects.

• ‘x.y’: look for ‘y’ starting at ‘x’

Account:

total deposits: 11300
init : . . .

deposit: . . .

withdraw: . . .

acct1:

acct2:

balance: 1300

balance: 10000

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 8

Assigning to Attributes

• Assigning to an attribute of an object (including a class) is like as-
signing to a local variable: it creates a new binding for that attribute
in the object selected from (i.e., referenced by the expression on
the left of the dot).

>>> class Value:

... value = 0

...

>>> val1 = Value()

>>> val2 = Value()

>>> val2.value = 3

>>> val1.value

0

>>> Value.value

0

>>> val2.value

3

Value: value: 0

val1:

val2: value: 3

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 9

Attributes of Classes

• In Python classes themselves are objects.

• (You might well ask “What is the type of a class?” Answer: a builtin
class called type, whose type is itself.)

• Therefore, classes themselves have attributes.

• Assignments and defs immediately inside a class define class at-
tributes.

• Since obj.x looks for x in the class of obj if it doesn’t find it in obj

itself, the attributes defined in a class provide default values for
attributes of the object that are instances of the class.

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 10

Methods

• Consider
>>> class Foo:

... def set(self, x):

... self.value = x

>>> aFoo = Foo(10)

• The access aFoo.set returns the set method defined in Foo (since
we haven’t set it in aFoo.

• However, in this particular case (function retrieved from the class
of an object), what gets returned is a little different.

>>> aFoo.set

<bound method Foo.set of ...>

• A bound method is an ordinary function that has its first parameter
“pre-bound” to a particular value—in this case to aFoo.

>>> aFoo.set(13) # First parameter (self) of set is aFoo, x is 13.

>>> aFoo.value

13

• The effect is (almost) the same as

>>> Foo.set(aFoo, 13)

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 11

Class Attributes in Python

• Sometimes, a quantity applies to a type as a whole, not a specific
instance.

• For example, with Accounts, you might want to keep track of the
total amount deposited from all Accounts.

• This is an example of something confusing called a class attribute.

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 12

Class Attribute Example

class Account:

total deposits = 0 # Define/initialize a class attribute

def init (self, initial balance):

self. balance = initial balance

Account. total deposits += initial balance

def deposit(self, amount):

self. balance += amount

Account. total deposits += amount

def total deposits(): # Define a class method.

return Account. total deposits

>>> acct1 = Account(1000)

>>> acct2 = Account(10000)

>>> acct1.deposit(300)

>>> Account.total deposits()

11300

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 13

Classes and Operators

• Many standard operators defined in Python are essentially “syntac-
tic sugar” for method calls.

• Examples:

– x+y becomes x. add (y) if add is defined for x.

– x[k] becomes x. getitem (k).

– x[k] = 3 becomes x. setitem (k, 3).

– len(x) calls x. len ().

– repr(x) calls x. repr (), which is what the interpreter uses to
print the value of expressions you type.

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 14

Class Machinery: Summary

• Classes have attributes, created by assignment statements and defs

in the class body.

• Function-values attributes of classes are called methods.

• Classes beget objects called instances, created by “calling” the class:
Account(1000).

• Each such Account object initially shares the attributes of its class.

• Attributes can be accessed using object.attribute notation.

• A method call mine.deposit(100) is essentially the same as
Account.deposit(mine, 100).

• By convention, we call the first argument of a method self to indi-
cate that it is the object from which we got the method.

• When an object is created, the special init method is called on
it first.

• Assigning to an attribute of an object (a.b = v) gives that object
its own attribute (not shared with the class), if it doesn’t have it
already.

Last modified: Sun Feb 19 17:20:46 2017 CS61A: Lecture #13 15

	Lecture #13: Objects and Classes
	Data Abstraction vs. Function Abstraction
	Extending the Mutable Objects: Classes
	Simple Classes: Bank Account
	Class Concepts
	Class Machinery
	Attribute Access
	Modeling Attributes in Python
	Assigning to Attributes
	Attributes of Classes
	Methods
	Class Attributes in Python
	Class Attribute Example
	Classes and Operators
	Class Machinery: Summary

