
Lecture #12: Mutable Data

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 1



Using Mutability For Construction: map rlist Revisited

• Even if we never change a data structure once it is constructed,
mutation may be useful during its construction.

• Example: constructing a recursive list. In lecture #9, I said that
iterative construction of the result of map rlist was not as easy as
for getitem rlist, compared to recursive version.

• But it’s reasonably easy if we mutate items during construction:

def map rlist(f, s):

"""The rlist of values F(x) for each

x in rlist S (in the same order.)"""

if (isempty(s)):

return s

result = last = make rlist(f(first(s)))

s = rest(s)

while not isempty(s):

set rest(last,

make rlist(f(first(s))))

last, s = rest(last), rest(s)

return result

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 2



map rlist Illustrated

def map rlist(f, s):

"""The rlist of values F(x) for each

x in rlist S (in the same order.)"""

if (isempty(s)):

return s

result = last = make rlist(f(first(s)))

s = rest(s)

while not isempty(s):

set rest(last,

make rlist(f(first(s))))

last, s = rest(last), rest(s)

return result

L = make rlist(-1,

make rlist(-2,

make rlist(-3)))

Q = map rlist(abs, L)

L: -1 -2 -3

s:

result:

last:

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 3



map rlist Illustrated (II)

def map rlist(f, s):

"""The rlist of values F(x) for each

x in rlist S (in the same order.)"""

if (isempty(s)):

return s

result = last = make rlist(f(first(s))) ⇐

s = rest(s)

while not isempty(s):

set rest(last,

make rlist(f(first(s))))

last, s = rest(last), rest(s)

return result

L = make rlist(-1,

make rlist(-2,

make rlist(-3)))

Q = map rlist(abs, L)

L: -1 -2 -3

s:

result: 1

last:

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 4



map rlist Illustrated (III)

def map rlist(f, s):

"""The rlist of values F(x) for each

x in rlist S (in the same order.)"""

if (isempty(s)):

return s

result = last = make rlist(f(first(s)))

s = rest(s) ⇐

while not isempty(s):

set rest(last,

make rlist(f(first(s))))

last, s = rest(last), rest(s)

return result

L = make rlist(-1,

make rlist(-2,

make rlist(-3)))

Q = map rlist(abs, L)

L: -1 -2 -3

s:

result: 1

last:

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 5



map rlist Illustrated (IV)

def map rlist(f, s):

"""The rlist of values F(x) for each

x in rlist S (in the same order.)"""

if (isempty(s)):

return s

result = last = make rlist(f(first(s)))

s = rest(s)

while not isempty(s):

set rest(last,

make rlist(f(first(s)))) ⇐

last, s = rest(last), rest(s)

return result

L = make rlist(-1,

make rlist(-2,

make rlist(-3)))

Q = map rlist(abs, L)

L: -1 -2 -3

s:

result: 1 2

last:

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 6



map rlist Illustrated (V)

def map rlist(f, s):

"""The rlist of values F(x) for each

x in rlist S (in the same order.)"""

if (isempty(s)):

return s

result = last = make rlist(f(first(s)))

s = rest(s)

while not isempty(s):

set rest(last,

make rlist(f(first(s))))

last, s = rest(last), rest(s) ⇐

return result

L = make rlist(-1,

make rlist(-2,

make rlist(-3)))

Q = map rlist(abs, L)

L: -1 -2 -3

s:

result: 1 2

last:

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 7



map rlist Illustrated (VI)

def map rlist(f, s):

"""The rlist of values F(x) for each

x in rlist S (in the same order.)"""

if (isempty(s)):

return s

result = last = make rlist(f(first(s)))

s = rest(s)

while not isempty(s):

set rest(last,

make rlist(f(first(s)))) ⇐

last, s = rest(last), rest(s)

return result

L = make rlist(-1,

make rlist(-2,

make rlist(-3)))

Q = map rlist(abs, L)

L: -1 -2 -3

s:

result: 1 2 3

last:

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 8



map rlist Illustrated (VII)

def map rlist(f, s):

"""The rlist of values F(x) for each

x in rlist S (in the same order.)"""

if (isempty(s)):

return s

result = last = make rlist(f(first(s)))

s = rest(s)

while not isempty(s):

set rest(last,

make rlist(f(first(s))))

last, s = rest(last), rest(s) ⇐

return result

L = make rlist(-1,

make rlist(-2,

make rlist(-3)))

Q = map rlist(abs, L)

L: -1 -2 -3

s:

result: 1 2 3

last:

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 9



map rlist Illustrated (VIII)

def map rlist(f, s):

"""The rlist of values F(x) for each

x in rlist S (in the same order.)"""

if (isempty(s)):

return s

result = last = make rlist(f(first(s)))

s = rest(s)

while not isempty(s):

set rest(last,

make rlist(f(first(s))))

last, s = rest(last), rest(s)

return result

L = make rlist(-1,

make rlist(-2,

make rlist(-3)))

Q = map rlist(abs, L) ⇐

L: -1 -2 -3

Q: 1 2 3

• In building Q, we modified rlists we had previously created,. . .

• . . . but map rlist is non-destructive; the original list is intact.

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 10



Immutable and Mutable Data as Functions

• We’ve seen functions as immutable data items.

• For example, in lecture #8, we defined

def cons(left, right):

return lambda which: left if which else right

def left(pair): return pair(True)

def right(pair): return pair(False)

• Can one do set left and set right with this representation?

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 11



Mutation By Assignment?

• Why not use assignment?

def cons(left, right):

def data(which, value=None):

if which == 0: return left

elif which == 1: return right

elif which == 2: left = value

else: right = value

return data

def left(pair): return pair(0)

def right(pair): return pair(1)

def set left(pair, v): return pair(2, v)

def set right(pair, v): return pair(3, v)

• This does not work. Why not?

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 12



Assignment Up Until Now

• By default, an assignment in Python (including = and for...in), binds
a name in the current environment frame.

• Not always what you want. E.g„

def cons(left, right):

def data(which, value=None):

if which == 0: return left

elif which == 1: return right

elif which == 2: left = value Doesn’t work

else: right = value Doesn’t work

return data

A = cons(1, 2)

A(2, 4) # Try to assign 4 to left

• The attempt to assign to left creates a new local (uninitialized)
variable on each call to A, which vanishes when the call returns.

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 13



The nonlocal Declaration

• To fix this problem, we introduce a new declaration: nonlocal:

def cons(left, right):

def data(which, value=None):

nonlocal left, right

if which == 0: return left

elif which == 1: return right

elif which == 2: left = value # Assigns to enclosing left

else: right = value # Assigns to enclosing right

return data

A = cons(1, 2)

A(2, 4) # Try to assign 4 to left

• The effect of nonlocal is that all references left and right imme-
diately within data refer to the ordinary local variable or parameter
in the smallest enclosing function definition, rather than to any local
variable in data.

• [Any nonlocal declarations in functions enclosing data would have
no effect.]

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 14



Global Declaration

• nonlocal does not refer to global variables—those defined outside
of any function.

• Instead, Python has a global declaration that marks names assigned
in the function as referring to variables in the global scope.

• These variables need not previously exist, and must not already be
local in the function.

>>> def f():

... global x, y

... x = 4 # Sets global x

... y = 2 # Creates and sets global y

... g()

>>> x = 1

>>> f()

>>> print(x, y)

4 2

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 15



Details

• Neither global nor nonlocal affects variables in more deeply nested
functions:

>>>def f():

... global x

... def g():

... x = 3 # Local x

... g()

... return x

>>> x = 0

>>> f()

0 # global declaration does not apply to outer x

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 16



More on Building Objects With State

• The term state applied to an object or system refers to the current
information content of that object or system.

• Include values of attributes and, in the case of functions, the values
of variables in the environment frames they link to.

• Some objects are immutable, e.g., integers, booleans, floats, strings,
and tuples that contain only immutable objects. Their state does not
vary over time, and so objects with identical state may be substi-
tuted freely.

• Other objects in Python are (at least partially) mutable, and substi-
tuting one object for another with identical state may not work as
expected if you incorrectly expect that both objects will continue
to have the same value.

• Have just seen that we can build mutable objects from functions.

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 17



Mutable Objects With Functions (continued)

• How about dice?
import time

def make dice(sides = 6, seed = None):

"""A new ’sides’-sided die."""

if seed == None:

seed = int(time.time() * 100000)

a, c, m = 25214903917, 11, 2**48 # From Java

def die():

nonlocal seed

seed = (a*seed + c) % m

return seed % sides + 1

return die

>>> d = make dice(6, 10002)

>>> d()

6

>>> d()

5

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 18



Truth: We Don’t Usually Do It This Way!

• Usually, if we want an object with mutable state, we use one of
Python’s mutable object types,

• Let’s look at a couple of standard ones.

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 19



Tuples and Lists

• Python tuples are a kind of function, mapping non-negative integers
(indices) in a finite range to values.

• One cannot change the value at a given index, but can only create a
new tuple:

>>> A = B = (1, 2, 3, 4, 5, 6)

>>> A[2] = 42; A[6:] = [7, 8] # Illegal

>>> B = A[:2] + (42,) + A[3:] + (7, 8)

>>> A

(1, 2, 3, 4, 5, 6)

>>> B

(1, 2, 42, 4, 5, 6, 7, 8)

• Lists are a kind of mutable function, where the value at an index
may be changed, and new items added.

>>> A = B = [1, 2, 3, 4, 5, 6]

>>> A[2] = 42; A[6:] = [7, 8]

>>> A

[1, 2, 42, 4, 5, 6, 7, 8]

>>> B

[1, 2, 42, 4, 5, 6, 7, 8]

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 20



Dictionaries

• Dictionaries (type dict) are mutable mappings from one set of values
(called keys) to another.

• Constructors:

>>> {} A new, empty dictionary

>>> { ’brian’ : 29, ’erik’: 27, ’zack’: 18, ’dana’: 25 }

{’brian’: 29, ’erik’: 27, ’dana’: 25, ’zack’: 18}

>>> L = (’aardvark’, ’axolotl’, ’gnu’, ’hartebeest’, ’wombat’)

>>> successors = { L[i-1] : L[i] for i in range(1, len(L)) }

>>> successors

{’aardvark’: ’axolotl’, ’hartebeest’: ’wombat’,

’axolotl’: ’gnu’, ’gnu’: ’hartebeest’}

• Queries:

>>> len(successors)

4

>>> ’gnu’ in successors

True

>>> ’wombat’ in successors

False

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 21



Dictionary Selection and Mutation

• Selection and Mutation

>>> ages = { ’brian’ : 29, ’erik’: 27, ’zack’: 18, ’dana’: 25 }

>>> ages[’erik’]

27

>>> ages[’paul’]

...

KeyError: ’paul’

>>> ages.get(’paul’, "?") # Supply default value

’?’

• Mutation:
>>> ages[’erik’] += 1; ages[’john’] = 56

ages

{’brian’: 29, ’john’: 56, ’erik’: 28, ’dana’: 25, ’zack’: 18}

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 22



Dictionary Keys

• Unlike sequences, ordering is not defined.

• Keys must typically have immutable types that contain only immutable
data [can you guess why?] that have a hash method. Take CS61B
to find out what’s going on here.

• When converted into a sequence, get the sequence of keys:

>>> ages = { ’brian’ : 29, ’erik’: 27, ’zack’: 18, ’dana’: 25 }

>>> list(ages)

[’brian’, ’erik’, ’dana’, ’zack’]

>>> for name in ages: print(ages[name], end=",")

29, 27, 25, 18,

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 23



A Dictionary Problem

def frequencies(L):

"""A dictionary giving, for each w in L, the number of times w

appears in L.

>>> frequencies([’the’, ’name’, ’of’, ’the’, ’name’, ’of’, ’the’,

... ’song’])

{’of’: 2, ’the’: 3, ’name’: 2, ’song’: 1}

"""

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 24



A Dictionary Problem (II)

def frequencies(L):

"""A dictionary giving, for each w in L, the number of times w

appears in L.

>>> frequencies([’the’, ’name’, ’of’, ’the’, ’name’, ’of’, ’the’,

... ’song’])

{’of’: 2, ’the’: 3, ’name’: 2, ’song’: 1}

"""

for :

return

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 25



A Dictionary Problem (III)

def frequencies(L):

"""A dictionary giving, for each w in L, the number of times w

appears in L.

>>> frequencies([’the’, ’name’, ’of’, ’the’, ’name’, ’of’, ’the’,

... ’song’])

{’of’: 2, ’the’: 3, ’name’: 2, ’song’: 1}

"""

result = {}

for :

return result

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 26



A Dictionary Problem (IV)

def frequencies(L):

"""A dictionary giving, for each w in L, the number of times w

appears in L.

>>> frequencies([’the’, ’name’, ’of’, ’the’, ’name’, ’of’, ’the’,

... ’song’])

{’of’: 2, ’the’: 3, ’name’: 2, ’song’: 1}

"""

result = {}

for w in L:

return result

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 27



A Dictionary Problem (V)

def frequencies(L):

"""A dictionary giving, for each w in L, the number of times w

appears in L.

>>> frequencies([’the’, ’name’, ’of’, ’the’, ’name’, ’of’, ’the’,

... ’song’])

{’of’: 2, ’the’: 3, ’name’: 2, ’song’: 1}

"""

result = {}

for w in L:

result[w] = result.get(w, 0) + 1

return result

Challenge: Do this in one line (I used 51 characters, including the
return).

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 28



Using Only Keys

• Suppose that all we need are the keys (values are irrelevant):

def is duplicate(L):

"""True iff L contains a duplicated item."""

items = {}

for x in L:

if x in items: return True

items[x] = True # Or any value

return False

def common keys(D0, D1):

"""Return dictionary containing the keys common to D0 and D1."""

result = {}

for x in D0:

if x in D1: result[x] = True

return result

• These dictionaries function as sets of values.

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 29



Sets

Rather than force us to use dictionaries like this (“wasting” the values),
Python supplies sets:

>>> rainbow = {’Red’, ’Orange’, ’Yellow’, ’Green’, ’Blue’, ’Indigo’, ’Violet’}

>>> nothing = set() # Empty set (sorry; {} was already taken)

>>> from list = set([1, 2, 3]) # Same as { 1, 2, 3 }

>>> A = { -2, -1, 0, 1, 2, 3, 4, 5 }

>>> B = { 0, 2, 4, 6, 8 }

>>> A.add(-3) # Mutable

>>> A | B # Union

{0, 1, 2, 3, 4, 5, 6, 8, -2, -3, -1} # Order undefined

>>> A & B # Intersection

{0, 2, 4}

>>> A - B # Set difference

{1, 3, 5, -1, -3, -2}

>>> A ^ B # Symmetric difference

{1, 3, 5, 6, 8, -1, -3, -2}

>>> 1 in B # Membership ( 1 ∈ B )

False

>>> A |= { 42 } # Updating assignment (also \&, -, etc.)

>>> A

{0, 1, 2, 3, 4, 5, 42, -2, -3, -1}

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 30



Using Sets

• Can improve on previous use of dictionaries:

def is duplicate(L):

"""True iff L contains a duplicated item."""

return len(L) != len(set(L))

def common keys(D0, D1):

"""Return set containing the keys common to D0 and D1."""

return D0.keys() & D1.keys()

• When a dictionary is iterated over in a for loop, or turned into a list
or set, the values it provides are its keys, so we can write the last
line above as

return set(D0) & set(D1)

Last modified: Sun Feb 19 17:15:18 2017 CS61A: Lecture #12 31


	Lecture #12: Mutable Data
	Using Mutability For Construction: map_rlist Revisited
	map_rlist Illustrated
	map_rlist Illustrated (II)
	map_rlist Illustrated (III)
	map_rlist Illustrated (IV)
	map_rlist Illustrated (V)
	map_rlist Illustrated (VI)
	map_rlist Illustrated (VII)
	map_rlist Illustrated (VIII)
	Immutable and Mutable Data as Functions
	Mutation By Assignment?
	Assignment Up Until Now
	The nonlocal Declaration
	Global Declaration
	Details
	More on Building Objects With State
	Mutable Objects With Functions (continued)
	Truth: We Don't Usually Do It This Way!
	Tuples and Lists
	Dictionaries
	Dictionary Selection and Mutation
	Dictionary Keys
	A Dictionary Problem
	A Dictionary Problem (II)
	A Dictionary Problem (III)
	A Dictionary Problem (IV)
	A Dictionary Problem (V)
	Using Only Keys
	Sets
	Using Sets

