Lecture #11: Immutable and Mutable Data

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 1

Building Recursive Structures

e In Lecture #9, we defined map rlist and filter rlist:

def map rlist(f, s):
"""The rlist of values F(x) for each element x of rlist S (same order)."""
if isempty(s):
return empty.rlist
else:
return make rlist(f(first(s)), map.rlist(f, rest(s)))

def filter rlist(cond, seq):
"""The rlist consisting of the subsequence of rlist SEQ for which

the 1-argument function COND returns a true value.
if isempty(seq):

return empty rlist
elif cond(first(seq)):

return make rlist(first(seq), filter rlist(cond, rest(seq)))
else:

return filter rlist(cond, rest(seq))

o In both cases, the original input rlist is preserved and a new list
created: the operation is non-destructive.

e We've treated rlists as immutable: unchanging once created.

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 2

Another Example: Concatenating Rlists

e To keep with Python terminology, adding one element to the end of a
list is appending, and concatenating two lists together is extending.

L1 = make rlist(1, make rlist(2, empty rlist))
L2 = make rlist(3, make rlist(4, make rlist(5, empty rlist)))

L3 = extend rlist(L1, L2)
[2 [X

_L_m_lﬂ
e[{3 [F—la[F{5]<
rw"m_lﬂ

| 2]

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 3

Concatenating Rlists (IT)

def extend rlist(left, right):
"""The sequence of items of rlist LEFT followed by the items of RIGHT."""

if isempty(left):
return right
elif isempty(right):
return left
else:
return

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 5

Concatenating Rlists

def extend rlist(left, right):
The sequence of items of rlist LEFT followed by the items of RIGHT.

if

return

elif

return

else:

return

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 4

Concatenating Rlists (IIT)

def extend rlist(left, right):
"""The sequence of items of rlist LEFT followed by the items of RIGHT."""

if isempty(left):
return right
elif isempty(right): # Not really needed
return left
else:
return make rlist(first(left),
extend rlist(rest(left), right))

Here, the 1left argument gets duplicated, but with its last rest value
being right instead of empty rlist.

We could exclude the first elif clause without affecting correctness
[why?]...

o ...but there is a potential advantage to having it [what?].

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 6

Still Another Example: Replacing a Leaf of a Tree

o From lecture #10, a tree's recursive structure is:
- A label and
- Zero or more children, each a tree.

o Example: replacing a leaf with a tree. Replacing leaf 4 on the left
with the middle tree gives the tree on the right.

(0 (5) (0
® (9) @ ® ® (9)
@ @ 6 B @ 6
@ ®

def replace leaf(T1, v, T2):
"""The tree T1 with any leaf whose label is V
replaced by subtree T2."""

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 7

Replacing a Leaf of a Tree (II)

e Example: replacing a leaf with a tree. Replacing leaf 4 on the left
with the middle tree gives the tree on the right.

) ())
® ©)) ® ®)
@ @ © B @ ©
@ ®

def replace leaf(T1l, v, T2):
"""The tree T1 with any leaf whose label is V
replaced by subtree T2."""

if

return

else:

return

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 8

Replacing a Leaf of a Tree (III)

o Example: replacing a leaf with a tree. Replacing leaf 4 on the left
with the middle tree gives the free on the right.

(0 (5)
® (9) @ ®
@ @ 6

def replace leaf(T1, v, T2):
"""The tree T1 with any leaf whose label is V
replaced by subtree T2."""
If v is NOT in T1,
if isleaf(T1) and label(T1) == v: # where’s the base case??!!
return T2
else:
return make tree(label(T1),
[replace leaf(c, v, T2) for c in branches(T1)])

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 9

Mutability and Destructive Operations

e What if we don't need the original data? Then nondestructive oper-
ations have memory costs, possibly time costs as well.

o For example, in the preceding extend rlist example, we could sim-
ply keep the same rlist objects as before, without copying anything,
and just changed the pointer at the end of the left list with a pointer
to the right list:

L1 = make rlist(1, make rlist(2, empty rlist))

L2 = make rlist(3, make rlist(4, make rlist(5, empty rlist)))
L3 = dextend rlist(L1, L2) # Destructive extend

L3:

L1L:

L2:

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 11

Immutability and Nondestructive Operations

e The functions in this lecture (and in previous ones) did not modify
existing list or tree structures (only local variables).

e That is, they were non-destructive; they preserved the original in-
put data:

>>> L0 = make rlist(-3, make rlist(-2, make rlist(-1)))
>>> L0

(-3, (-2, (-1, None))) # Assumes empty rlist is None.
>>> L1 = map.rlist(abs, LO)

>>> L1

(3, (2, (1, None)))

>>> L0

(-3, (-2, (-1, Nomne)))

e Indeed, the rlist interface makes them immutable.
e This is a very useful property:

- List values behave like integer values (e.g.): stay around as long
as needed in a computation.

- Safe to share sublists or subtrees in two different structures.

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #1110

Mutating Operations

e Suppose we add two more operations to rlist:
def set first(r, v):

"""Cause first(R) to be V."""

def set. rest(r, V):
"""Cause rest(R) to be V."

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #1112

Destructive Extending

def extend rlist(left, right):

"""The sequence of items of rlist LEFT followed by the items of RIGHT.
if isempty(left):

return right
elif isempty(right):

return left
else:

return make rlist(first(left),

extend rlist(rest(left), right))

def dextend rlist(left, right):
"""Returns result of extending LEFT with RIGHT. May destroy original
list LEFT.
if isempty(left):
return right
elif isempty(right):
return left

else:

return

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 13

Destructive Extending (II)

def extend rlist(left, right):

"""The sequence of items of rlist LEFT followed by the items of RIGHT."""
if isempty(left):

return right
elif isempty(right):

return left
else:

return make rlist(first(left),

extend rlist(rest(left), right))

def dextend rlist(left, right):
"""Returns result of extending LEFT with RIGHT. May destroy original
list LEFT.
if isempty(left):
return right
elif isempty(right):
return left

else:
set_rest(left, dextend rlist(rest(left), right))
return left

d: Sun Feb 19 17:03:49 2017 CS61A: Lecture #1114

Destructive Mapping

def dmap rlist(f, s):
"""The rlist of values F(x) for each element x of rlist S in
order. May modify S."""
if isempty(s):
return empty rlist # This case doesn’t change
else:
?

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 15

Iterative Version of dmap rlist

def dmap rlist2(f, s):
"""The rlist of values F(x) for each element x of rlist S in
order. May modify S."""
p=s
while not isempty(p):

return

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #1117

Destructive Mapping (II)

def dmap rlist(f, s):
"""The rlist of values F(x) for each element x of rlist S in
order. May modify S."""
if isempty(s):
return empty rlist # This case doesn’t change
else:
set_first(s, f(first(s)))
dmap rlist (f, rest(s))
return s
>>> L0 = make rlist(-3, make rlist(-2, make rlist(-1)))
>>> L0
(-3, (-2, (-1, None))) # Assumes empty rlist is None.
>>> L1 = dmap rlist(abs, LO)
>>> L1
(3, (2, (1, None)))
>>> L0
(3, (2, (1, None))) # Original data lost

d: Sun Feb 19 17:03:49 2017 CS61A: Lecture #1116

Iterative Version of dmap._rlist (II)

def dmap rlist2(f, s):
"""The rlist of values F(x) for each element x of rlist S in
order. May modify S."""
p=-s
while not isempty(p):
set_first(p, f(first(p)))
p = rest(p)
return s

d: Sun Feb 19 17:03:49 2017 CS61A: Lecture #1118

The Picture
e Good idea to have a mental picture of the differences here.

LO = make rlist(-3, make rlist(-2, make rlist(-1)))
L1 = map_rlist(abs, LO)

o[A {2 [3]
R I P B
51

L2 = dmap.rlist(lambda x: x**2, LO)
Lo (1] +—{4]

L2:

b {1 F——2[F——13]

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #1119

Identity

o We distinguish between identity of objects:

S0 = (1, 2, 3); S1=(1, 2, 3)
(80 is S1) == False

e And equality of contents:
(80 == 81) == True

e When dealing with immutable objects, we generally ighore identity;
only equality of contents ever matters, and once equal always equal.

o Allows referential transparency: if S[0] == 3, and S as a whole is
not re-assigned, can substitute 3 for S[0] anywhere.

e When dealing with mutable structures, identity matters, and we
don't have referential transparency.

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #1120

Identity (IT)

>>> 80 = [1, 2]
>>> 81 = [1, 2]

>>> 82 = S0
>>> 80 == 52 == S1
True

>>> S0[0] = 3 # Not possible with tuples
>>> 80 is S2 and SO == S2

True
>>> S0 == S1
False
>>> S1 == 52
False

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #1121

	Lecture #11: Immutable and Mutable Data
	Building Recursive Structures
	Another Example: Concatenating Rlists
	Concatenating Rlists
	Concatenating Rlists (II)
	Concatenating Rlists (III)
	Still Another Example: Replacing a Leaf of a Tree
	Replacing a Leaf of a Tree (II)
	Replacing a Leaf of a Tree (III)
	Immutability and Nondestructive Operations
	Mutability and Destructive Operations
	Mutating Operations
	Destructive Extending
	Destructive Extending (II)
	Destructive Mapping
	Destructive Mapping (II)
	Iterative Version of dmap_rlist
	Iterative Version of dmap_rlist (II)
	The Picture
	Identity
	Identity (II)

