
Lecture #11: Immutable and Mutable Data

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 1

Building Recursive Structures

• In Lecture #9, we defined map rlist and filter rlist:

def map rlist(f, s):

"""The rlist of values F(x) for each element x of rlist S (same order)."""

if isempty(s):

return empty rlist

else:

return make rlist(f(first(s)), map rlist(f, rest(s)))

def filter rlist(cond, seq):

"""The rlist consisting of the subsequence of rlist SEQ for which

the 1-argument function COND returns a true value."""

if isempty(seq):

return empty rlist

elif cond(first(seq)):

return make rlist(first(seq), filter rlist(cond, rest(seq)))

else:

return filter rlist(cond, rest(seq))

• In both cases, the original input rlist is preserved and a new list
created: the operation is non-destructive.

• We’ve treated rlists as immutable: unchanging once created.

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 2

Another Example: Concatenating Rlists

• To keep with Python terminology, adding one element to the end of a
list is appending, and concatenating two lists together is extending.

L1 = make rlist(1, make rlist(2, empty rlist))

L2 = make rlist(3, make rlist(4, make rlist(5, empty rlist)))

L3 = extend rlist(L1, L2)

L1: 1 2

L2: 3 4 5

L3: 1 2

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 3

Concatenating Rlists

def extend rlist(left, right):

"""The sequence of items of rlist LEFT followed by the items of RIGHT."""

if :

return

elif :

return

else:

return

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 4

Concatenating Rlists (II)

def extend rlist(left, right):

"""The sequence of items of rlist LEFT followed by the items of RIGHT."""

if isempty(left):

return right

elif isempty(right):

return left

else:

return

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 5

Concatenating Rlists (III)

def extend rlist(left, right):

"""The sequence of items of rlist LEFT followed by the items of RIGHT."""

if isempty(left):

return right

elif isempty(right): # Not really needed

return left

else:

return make rlist(first(left),

extend rlist(rest(left), right))

• Here, the left argument gets duplicated, but with its last rest value
being right instead of empty rlist.

• We could exclude the first elif clause without affecting correctness
[why?]. . .

• . . . but there is a potential advantage to having it [what?].

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 6

Still Another Example: Replacing a Leaf of a Tree

• From lecture #10, a tree’s recursive structure is:

– A label and

– Zero or more children, each a tree.

• Example: replacing a leaf with a tree. Replacing leaf 4 on the left
with the middle tree gives the tree on the right.

10

8 9

4 2 3

5

4 1

10

8 9

5

4 1

2 3

def replace leaf(T1, v, T2):

"""The tree T1 with any leaf whose label is V

replaced by subtree T2."""

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 7

Replacing a Leaf of a Tree (II)

• Example: replacing a leaf with a tree. Replacing leaf 4 on the left
with the middle tree gives the tree on the right.

10

8 9

4 2 3

5

4 1

10

8 9

5

4 1

2 3

def replace leaf(T1, v, T2):

"""The tree T1 with any leaf whose label is V

replaced by subtree T2."""

if :

return

else:

return

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 8

Replacing a Leaf of a Tree (III)

• Example: replacing a leaf with a tree. Replacing leaf 4 on the left
with the middle tree gives the tree on the right.

10

8 9

4 2 3

5

4 1

10

8 9

5

4 1

2 3

new nodes

def replace leaf(T1, v, T2):

"""The tree T1 with any leaf whose label is V

replaced by subtree T2."""

If v is NOT in T1,

if isleaf(T1) and label(T1) == v: # where’s the base case??!!!

return T2

else:

return make tree(label(T1),

[replace leaf(c, v, T2) for c in branches(T1)])

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 9

Immutability and Nondestructive Operations

• The functions in this lecture (and in previous ones) did not modify
existing list or tree structures (only local variables).

• That is, they were non-destructive; they preserved the original in-
put data:

>>> L0 = make rlist(-3, make rlist(-2, make rlist(-1)))

>>> L0

(-3, (-2, (-1, None))) # Assumes empty rlist is None.

>>> L1 = map rlist(abs, L0)

>>> L1

(3, (2, (1, None)))

>>> L0

(-3, (-2, (-1, None)))

• Indeed, the rlist interface makes them immutable.

• This is a very useful property:

– List values behave like integer values (e.g.): stay around as long
as needed in a computation.

– Safe to share sublists or subtrees in two different structures.

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 10

Mutability and Destructive Operations

• What if we don’t need the original data? Then nondestructive oper-
ations have memory costs, possibly time costs as well.

• For example, in the preceding extend rlist example, we could sim-
ply keep the same rlist objects as before, without copying anything,
and just changed the pointer at the end of the left list with a pointer
to the right list:

L1 = make rlist(1, make rlist(2, empty rlist))

L2 = make rlist(3, make rlist(4, make rlist(5, empty rlist)))

L3 = dextend rlist(L1, L2) # Destructive extend

L1: 1 2

L2: 3 4 5

L3:

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 11

Mutating Operations

• Suppose we add two more operations to rlist:

def set first(r, v):

"""Cause first(R) to be V."""

def set rest(r, V):

"""Cause rest(R) to be V."""

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 12

Destructive Extending

def extend rlist(left, right):

"""The sequence of items of rlist LEFT followed by the items of RIGHT."""

if isempty(left):

return right

elif isempty(right):

return left

else:

return make rlist(first(left),

extend rlist(rest(left), right))

def dextend rlist(left, right):

"""Returns result of extending LEFT with RIGHT. May destroy original

list LEFT."""

if isempty(left):

return right

elif isempty(right):

return left

else:

return

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 13

Destructive Extending (II)

def extend rlist(left, right):

"""The sequence of items of rlist LEFT followed by the items of RIGHT."""

if isempty(left):

return right

elif isempty(right):

return left

else:

return make rlist(first(left),

extend rlist(rest(left), right))

def dextend rlist(left, right):

"""Returns result of extending LEFT with RIGHT. May destroy original

list LEFT."""

if isempty(left):

return right

elif isempty(right):

return left

else:

set rest(left, dextend rlist(rest(left), right))

return left

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 14

Destructive Mapping

def dmap rlist(f, s):

"""The rlist of values F(x) for each element x of rlist S in

order. May modify S."""

if isempty(s):

return empty rlist # This case doesn’t change

else:

?

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 15

Destructive Mapping (II)

def dmap rlist(f, s):

"""The rlist of values F(x) for each element x of rlist S in

order. May modify S."""

if isempty(s):

return empty rlist # This case doesn’t change

else:

set first(s, f(first(s)))

dmap rlist(f, rest(s))

return s

>>> L0 = make rlist(-3, make rlist(-2, make rlist(-1)))

>>> L0

(-3, (-2, (-1, None))) # Assumes empty rlist is None.

>>> L1 = dmap rlist(abs, L0)

>>> L1

(3, (2, (1, None)))

>>> L0

(3, (2, (1, None))) # Original data lost

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 16

Iterative Version of dmap rlist

def dmap rlist2(f, s):

"""The rlist of values F(x) for each element x of rlist S in

order. May modify S."""

p = s

while not isempty(p):

return

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 17

Iterative Version of dmap rlist (II)

def dmap rlist2(f, s):

"""The rlist of values F(x) for each element x of rlist S in

order. May modify S."""

p = s

while not isempty(p):

set first(p, f(first(p)))

p = rest(p)

return s

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 18

The Picture

• Good idea to have a mental picture of the differences here.

L0 = make rlist(-3, make rlist(-2, make rlist(-1)))

L1 = map rlist(abs, L0)

L0: -1 -2 -3

L1: 1 2 3

L2 = dmap rlist(lambda x: x**2, L0)

L0: 1 4 9

L2:

L1: 1 2 3

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 19

Identity

• We distinguish between identity of objects:

S0 = (1, 2, 3); S1 = (1, 2, 3)

(S0 is S1) == False

• And equality of contents:

(S0 == S1) == True

• When dealing with immutable objects, we generally ignore identity;
only equality of contents ever matters, and once equal always equal.

• Allows referential transparency: if S[0] == 3, and S as a whole is
not re-assigned, can substitute 3 for S[0] anywhere.

• When dealing with mutable structures, identity matters, and we
don’t have referential transparency.

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 20

Identity (II)

>>> S0 = [1, 2]

>>> S1 = [1, 2]

>>> S2 = S0

>>> S0 == S2 == S1

True

>>> S0[0] = 3 # Not possible with tuples

>>> S0 is S2 and S0 == S2

True

>>> S0 == S1

False

>>> S1 == S2

False

Last modified: Sun Feb 19 17:03:49 2017 CS61A: Lecture #11 21

	Lecture #11: Immutable and Mutable Data
	Building Recursive Structures
	Another Example: Concatenating Rlists
	Concatenating Rlists
	Concatenating Rlists (II)
	Concatenating Rlists (III)
	Still Another Example: Replacing a Leaf of a Tree
	Replacing a Leaf of a Tree (II)
	Replacing a Leaf of a Tree (III)
	Immutability and Nondestructive Operations
	Mutability and Destructive Operations
	Mutating Operations
	Destructive Extending
	Destructive Extending (II)
	Destructive Mapping
	Destructive Mapping (II)
	Iterative Version of dmap_rlist
	Iterative Version of dmap_rlist (II)
	The Picture
	Identity
	Identity (II)

