
Lecture #10: Sequences to Trees
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Review: Sequence Comprehension

• Syntax:

[ <expr> for <var> in <sequence expr> ]

[ <expr> for <var> in <sequence expr> if <boolean expression> ]

• Examples:

>>> [ 2**x for x in range(5) ]

[1, 2, 4, 8, 16 ]

>>> L = [5, 7, 8, 10, 6, 8, 7, 4, 9, 8]

>>> [ x for x in L if x % 2 == 1 ]

[ 5, 7, 7, 9 ]

• In fact, the syntax is more general:

>>> [ (x, y) for x in range(2) for y in range(3) ]

[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

>>> # Still one-dimensional; y varies fastest
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Representing Multi-Dimensional Structures

• How do we represent a two-dimensional table (like a matrix)?

• Answer: use a sequence of sequences (typically a list of lists or tuple
of tuples).

• The same approach is used in C, C++, and Java.

• Example:
















1 2 0 4

0 1 3 −1

0 0 1 8

















becomes

(( 1, 2, 0, 4 ), ( 0, 1, 3, -1), (0, 0, 1, 8))

# or

[[ 1, 2, 0, 4 ], [ 0, 1, 3, -1], [0, 0, 1, 8]]

# or (for old Fortran hands):

[[ 1, 0, 0 ], [ 2, 1, 0 ], [ 0, 3, 1 ], [ 4, -1, 8 ]]
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Problem: Creating A Two-Dimensional Table

def multiplication table(rows, cols):

"""A ROWS x COLS multiplication table where row x, column y

(element [x][y]) contains xy. Example:

>>> multiplication table(4, 3)

[[0, 0, 0], [0, 1, 2], [0, 2, 4], [0, 3, 6]]

"""

return
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Problem: Creating A Two-Dimensional Table (II)

def multiplication table(rows, cols):

"""A ROWS x COLS multiplication table where row x, column y

(element [x][y]) contains xy. Example:

>>> multiplication table(4, 3)

[[0, 0, 0], [0, 1, 2], [0, 2, 4], [0, 3, 6]]

"""

return [

for row in range(rows) ]
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Problem: Creating A Two-Dimensional Table (III)

def multiplication table(rows, cols):

"""A ROWS x COLS multiplication table where row x, column y

(element [x][y]) contains xy. Example:

>>> multiplication table(4, 3)

[[0, 0, 0], [0, 1, 2], [0, 2, 4], [0, 3, 6]]

"""

return [ [ row * col for col in range(cols) ]

for row in range(rows) ]

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 6



Problem: Creating a Triangular Array

• There’s no reason the rows in a 2D list must have the same length.

def triangle(rows):

"""A ROWSxROWS lower-triangular array

containing "*"s.

>>> triangle(4)

[[’*’], [’*’, ’*’], [’*’, ’*’, ’*’], [’*’, ’*’, ’*’, ’*’]]

"""
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Problem: Creating a Triangular Array (II)

• There’s no reason the rows in a 2D list must have the same length.

def triangle(rows):

"""A ROWSxROWS lower-triangular array

containing "*"s.

>>> triangle(4)

[[’*’], [’*’, ’*’], [’*’, ’*’, ’*’], [’*’, ’*’, ’*’, ’*’]]

"""

return [ [ "*" for c in range(k+1) ] for k in range(rows) ]

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 8



Variation: Creating a Numbered Triangular Array

• This time, use numbers instead of asterisks.

def numbered triangle(rows):

"""A ROWSxROWS lower-triangular array whose elements

are integers, starting at 0 going left-to-right,

up-to-down.

>>> numbered triangle(3)

[ [ 0 ], [ 1, 2 ], [ 3, 4, 5 ] ]"""
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Creating a Numbered Triangular Array (II)

• This time, use numbers instead of asterisks.

def numbered triangle(rows):

"""A ROWSxROWS lower-triangular array whose elements

are integers, starting at 0 going left-to-right,

up-to-down.

>>> numbered triangle(3)

[ [ 0 ], [ 1, 2 ], [ 3, 4, 5 ] ]"""

def first(row):

"""The ROWth triangular number."""

return (row * row + row) // 2

return
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Creating a Numbered Triangular Array (III)

• This time, use numbers instead of asterisks.

def numbered triangle(rows):

"""A ROWSxROWS lower-triangular array whose elements

are integers, starting at 0 going left-to-right,

up-to-down.

>>> numbered triangle(3)

[ [ 0 ], [ 1, 2 ], [ 3, 4, 5 ] ]"""

def first(row):

"""The ROWth triangular number."""

return (row * row + row) // 2

return [ [ x for x in range(first(row), first(row) + row + 1) ]

for row in range(rows) ]
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And Why Stop There? Trees

• We can have rows of rows, and rows of rows of rows, but we needn’t
stop at an arbitrary limit.

• Result can be thought of as a form of tree.

• E.g: One way to see [[[3, 7, 8], 9], 10]:

3 7 8

9

10

• The circles are called vertices or nodes, connected by edges.

• Top node is the root, bottom ones are leaves, non-leaves are inner
nodes.

• Each node is itself the root of a subtree; those immediately below
are its children.
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Trees With Labels

• Generally, each node (not just leaves) can have additional data, known
as a label:

20

15

8

2 1 5

9

10

• How can we represent this structure?
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Tree Interface

• Evidently, trees have labels and children, suggesting an API like this:

def make tree(label, branches = [])

"""A (sub)tree with given LABEL at its root, whose children

are KIDS."""

def label(tree):

"""The label on TREE."""

def branches(tree):

"""The children of TREE (each a tree)."""

def isleaf(tree):

"""True if TREE is a leaf node."""

• Representation?
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Tree Representation

def make tree(label, kids = [])

"""A (sub)tree with given LABEL at its root, whose children

are KIDS."""

return [ label ] + kids

def label(tree):

"""The label on TREE."""

return tree[0]

def branches(tree):

"""The children of TREE (each a tree)."""

return tree[1:]

def isleaf(tree):

"""True if TREE is a leaf node."""

return len(tree) == 1

Alternatives?
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Tree Representation (II)

def make tree(label, kids = [])

"""A (sub)tree with given LABEL at its root, whose children

are KIDS."""

return (label, kids)

def label(tree):

"""The label on TREE."""

return tree[0]

def branches(tree):

"""The children of TREE (each a tree)."""

return tree[1]

def isleaf(tree):

"""True if TREE is a leaf node."""

return len(branches(tree)) == 0
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Algorithms on Trees

• Trees have a recursive structure. A tree is:

– A label and

– Zero or more children, each a tree.

• Recursive structure implies recursive algorithm.
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Counting Leaves

def count leaves(tree):

"""The number of leaf nodes in TREE."""

if :

return

else:

return sum( )
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Counting Leaves (II)

def count leaves(tree):

"""The number of leaf nodes in TREE."""

if isleaf(tree):

return 1

else:

return sum( )
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Counting Leaves (III)

def count leaves(tree):

"""The number of leaf nodes in TREE."""

if isleaf(tree):

return 1

else:

return sum(map(count leaves, branches(tree)))

# or

return sum([ count leaves(x) for x in branches(tree) ])
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Evaluating an Expression

• Trees can represent arithmetic expressions.

• Leaf labels are numbers; other labels are operators (+, -, *, /)

• So (3 + 4) * (9 - 6) is

*

+

3 4

-

9 6

• Can we write a program to evaluate such an expression tree (i.e.,
return the value of the expression it represents)?
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Evaluation

def value(expr):

"""Return the value of the expression represented by the

expression tree expr

>>> value(make tree("*", [ make tree("+", [make tree(3), make tree(4)]),

... make tree("-", [make tree(9), make tree(6)]))

36

"""

if isleaf(expr):

return

elif :

return

...?
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Evaluation (II)

def value(expr):

"""Return the value of the expression represented by the

expression tree expr.

>>> value(make tree("*", [ make tree("+", [make tree(3), make tree(4)]),

... make tree("-", [make tree(9), make tree(6)]))

21

"""

if isleaf(expr):

return label(expr)

elif label(expr) == ’+’:

return value(branches(expr)[0]) + value(branches(expr)[1])

...?
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