
Lecture #10: Sequences to Trees

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 1

Review: Sequence Comprehension

• Syntax:

[<expr> for <var> in <sequence expr>]

[<expr> for <var> in <sequence expr> if <boolean expression>]

• Examples:

>>> [2**x for x in range(5)]

[1, 2, 4, 8, 16]

>>> L = [5, 7, 8, 10, 6, 8, 7, 4, 9, 8]

>>> [x for x in L if x % 2 == 1]

[5, 7, 7, 9]

• In fact, the syntax is more general:

>>> [(x, y) for x in range(2) for y in range(3)]

[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

>>> # Still one-dimensional; y varies fastest

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 2

Representing Multi-Dimensional Structures

• How do we represent a two-dimensional table (like a matrix)?

• Answer: use a sequence of sequences (typically a list of lists or tuple
of tuples).

• The same approach is used in C, C++, and Java.

• Example:

1 2 0 4

0 1 3 −1

0 0 1 8

becomes

((1, 2, 0, 4), (0, 1, 3, -1), (0, 0, 1, 8))

or

[[1, 2, 0, 4], [0, 1, 3, -1], [0, 0, 1, 8]]

or (for old Fortran hands):

[[1, 0, 0], [2, 1, 0], [0, 3, 1], [4, -1, 8]]

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 3

Problem: Creating A Two-Dimensional Table

def multiplication table(rows, cols):

"""A ROWS x COLS multiplication table where row x, column y

(element [x][y]) contains xy. Example:

>>> multiplication table(4, 3)

[[0, 0, 0], [0, 1, 2], [0, 2, 4], [0, 3, 6]]

"""

return

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 4

Problem: Creating A Two-Dimensional Table (II)

def multiplication table(rows, cols):

"""A ROWS x COLS multiplication table where row x, column y

(element [x][y]) contains xy. Example:

>>> multiplication table(4, 3)

[[0, 0, 0], [0, 1, 2], [0, 2, 4], [0, 3, 6]]

"""

return [

for row in range(rows)]

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 5

Problem: Creating A Two-Dimensional Table (III)

def multiplication table(rows, cols):

"""A ROWS x COLS multiplication table where row x, column y

(element [x][y]) contains xy. Example:

>>> multiplication table(4, 3)

[[0, 0, 0], [0, 1, 2], [0, 2, 4], [0, 3, 6]]

"""

return [[row * col for col in range(cols)]

for row in range(rows)]

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 6

Problem: Creating a Triangular Array

• There’s no reason the rows in a 2D list must have the same length.

def triangle(rows):

"""A ROWSxROWS lower-triangular array

containing "*"s.

>>> triangle(4)

[[’*’], [’*’, ’*’], [’*’, ’*’, ’*’], [’*’, ’*’, ’*’, ’*’]]

"""

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 7

Problem: Creating a Triangular Array (II)

• There’s no reason the rows in a 2D list must have the same length.

def triangle(rows):

"""A ROWSxROWS lower-triangular array

containing "*"s.

>>> triangle(4)

[[’*’], [’*’, ’*’], [’*’, ’*’, ’*’], [’*’, ’*’, ’*’, ’*’]]

"""

return [["*" for c in range(k+1)] for k in range(rows)]

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 8

Variation: Creating a Numbered Triangular Array

• This time, use numbers instead of asterisks.

def numbered triangle(rows):

"""A ROWSxROWS lower-triangular array whose elements

are integers, starting at 0 going left-to-right,

up-to-down.

>>> numbered triangle(3)

[[0], [1, 2], [3, 4, 5]]"""

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 9

Creating a Numbered Triangular Array (II)

• This time, use numbers instead of asterisks.

def numbered triangle(rows):

"""A ROWSxROWS lower-triangular array whose elements

are integers, starting at 0 going left-to-right,

up-to-down.

>>> numbered triangle(3)

[[0], [1, 2], [3, 4, 5]]"""

def first(row):

"""The ROWth triangular number."""

return (row * row + row) // 2

return

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 10

Creating a Numbered Triangular Array (III)

• This time, use numbers instead of asterisks.

def numbered triangle(rows):

"""A ROWSxROWS lower-triangular array whose elements

are integers, starting at 0 going left-to-right,

up-to-down.

>>> numbered triangle(3)

[[0], [1, 2], [3, 4, 5]]"""

def first(row):

"""The ROWth triangular number."""

return (row * row + row) // 2

return [[x for x in range(first(row), first(row) + row + 1)]

for row in range(rows)]

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 11

And Why Stop There? Trees

• We can have rows of rows, and rows of rows of rows, but we needn’t
stop at an arbitrary limit.

• Result can be thought of as a form of tree.

• E.g: One way to see [[[3, 7, 8], 9], 10]:

3 7 8

9

10

• The circles are called vertices or nodes, connected by edges.

• Top node is the root, bottom ones are leaves, non-leaves are inner
nodes.

• Each node is itself the root of a subtree; those immediately below
are its children.

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 12

Trees With Labels

• Generally, each node (not just leaves) can have additional data, known
as a label:

20

15

8

2 1 5

9

10

• How can we represent this structure?

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 13

Tree Interface

• Evidently, trees have labels and children, suggesting an API like this:

def make tree(label, branches = [])

"""A (sub)tree with given LABEL at its root, whose children

are KIDS."""

def label(tree):

"""The label on TREE."""

def branches(tree):

"""The children of TREE (each a tree)."""

def isleaf(tree):

"""True if TREE is a leaf node."""

• Representation?

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 14

Tree Representation

def make tree(label, kids = [])

"""A (sub)tree with given LABEL at its root, whose children

are KIDS."""

return [label] + kids

def label(tree):

"""The label on TREE."""

return tree[0]

def branches(tree):

"""The children of TREE (each a tree)."""

return tree[1:]

def isleaf(tree):

"""True if TREE is a leaf node."""

return len(tree) == 1

Alternatives?

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 15

Tree Representation (II)

def make tree(label, kids = [])

"""A (sub)tree with given LABEL at its root, whose children

are KIDS."""

return (label, kids)

def label(tree):

"""The label on TREE."""

return tree[0]

def branches(tree):

"""The children of TREE (each a tree)."""

return tree[1]

def isleaf(tree):

"""True if TREE is a leaf node."""

return len(branches(tree)) == 0

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 16

Algorithms on Trees

• Trees have a recursive structure. A tree is:

– A label and

– Zero or more children, each a tree.

• Recursive structure implies recursive algorithm.

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 17

Counting Leaves

def count leaves(tree):

"""The number of leaf nodes in TREE."""

if :

return

else:

return sum()

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 18

Counting Leaves (II)

def count leaves(tree):

"""The number of leaf nodes in TREE."""

if isleaf(tree):

return 1

else:

return sum()

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 19

Counting Leaves (III)

def count leaves(tree):

"""The number of leaf nodes in TREE."""

if isleaf(tree):

return 1

else:

return sum(map(count leaves, branches(tree)))

or

return sum([count leaves(x) for x in branches(tree)])

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 20

Evaluating an Expression

• Trees can represent arithmetic expressions.

• Leaf labels are numbers; other labels are operators (+, -, *, /)

• So (3 + 4) * (9 - 6) is

*

+

3 4

-

9 6

• Can we write a program to evaluate such an expression tree (i.e.,
return the value of the expression it represents)?

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 21

Evaluation

def value(expr):

"""Return the value of the expression represented by the

expression tree expr

>>> value(make tree("*", [make tree("+", [make tree(3), make tree(4)]),

... make tree("-", [make tree(9), make tree(6)]))

36

"""

if isleaf(expr):

return

elif :

return

...?

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 22

Evaluation (II)

def value(expr):

"""Return the value of the expression represented by the

expression tree expr.

>>> value(make tree("*", [make tree("+", [make tree(3), make tree(4)]),

... make tree("-", [make tree(9), make tree(6)]))

21

"""

if isleaf(expr):

return label(expr)

elif label(expr) == ’+’:

return value(branches(expr)[0]) + value(branches(expr)[1])

...?

Last modified: Sun Feb 19 16:04:58 2017 CS61A: Lecture #10 23

	Lecture #10: Sequences to Trees
	Review: Sequence Comprehension
	Representing Multi-Dimensional Structures
	Problem: Creating A Two-Dimensional Table
	Problem: Creating A Two-Dimensional Table (II)
	Problem: Creating A Two-Dimensional Table (III)
	Problem: Creating a Triangular Array
	Problem: Creating a Triangular Array (II)
	Variation: Creating a Numbered Triangular Array
	Creating a Numbered Triangular Array (II)
	Creating a Numbered Triangular Array (III)
	And Why Stop There? Trees
	Trees With Labels
	Tree Interface
	Tree Representation
	Tree Representation (II)
	Algorithms on Trees
	Counting Leaves
	Counting Leaves (II)
	Counting Leaves (III)
	Evaluating an Expression
	Evaluation
	Evaluation (II)

