
Lecture #9: Sequences

• The term sequence refers generally to a data structure consisting
of an indexed collection of values.

• That is, there is a first, second, third value (which CS types call #0,
#1, #2, etc.

• A sequence may be finite (with a length) or infinite.

• As an object, it may be mutable (elements can change) or immutable.

• There are numerous alternative interfaces (i.e., sets of operations)
for manipulating it.

• And, of course, numerous alternative implementations.

• Today: immutable, finite sequences, recursively defined.

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 1

A Recursive Definition

• A possible definition: A sequence consists of

– An empty sequence, or

– A first element and a sequence consisting of the elements of the
sequence other than the first—the rest of the sequence or tail.

• The definition is clearly recursive (“a sequence consists of . . . a se-
quence . . . ”), so let’s call it an rlist for now.

• Suggests the following ADT interface:

empty rlist = ...

def make rlist(first, rest = empty rlist):

"""A recursive list, r, such that first(r) is FIRST and

rest(r) is REST, which must be an rlist."""

def first(r):

"""The first item in R."""

def rest(r):

"""The tail of R."""

def isempty(r):

"""True iff R is the empty sequence"""

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 2

Implementation With Pairs

• An obvious implementation uses two-element tuples (pairs), such as
those defined in lecture 8.

• The result is called a linked list.
empty rlist = None

def make rlist(first, rest = empty rlist):

return cons(first, rest)

def first(r):

return left(r)

def rest(r):

return right(r)

def isempty(r):

return r is None

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 3

Implementation With Pairs (II)

• This implementation is rather trivial. Basically, we’ve dnne nothing
but give new names to the functions in the pair interface defined in
lecture 8.

• In fact, we could have defined everything like this:

empty rlist = None

make rlist = cons

first = left

rest = right

def isempty(r):

return r is None

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 4

Box-and-Pointer Diagrams for Linked Lists

• Diagrammatically, one gets structures like this:

The sequence containing: 8; the sequence containing 5 and 3;

and the empty sequence

Q = make rlist(5, make rlist(3, empty rlist))

L = make rlist(8,

make rlist(Q, make rlist(empty rlist, empty rlist)))

or

Q = make rlist(5, make rlist(3))

L = make rlist(8, make rlist(Q, make rlist(empty rlist)))

L: 8

5 3Q:

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 5

From Recursive Structure to Recursive Algorithm

• The cases in the recursive definition of list often suggest a recur-
sive approach to implementing functions on them.

• Example: length of an rlist:

def len rlist(s): # A sequence is:

"""The length of rlist ‘s’."""

if isempty(s): # Empty or...

return 0

else:

return 1 + len rlist(rest(s))

A first element and

the rest of the list

• Q: Why do we know the comment is accurate?

• A: Because we assume the comment is accurate!
(For “smaller” arguments, that is).

• An example of reasoning by structural induction. . .

• . . . or recursive thinking about data structures.

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 6

Another Example: Selection

• Want to extract item #k from an rlist (number from 0).

• Recursively:

def getitem rlist(s, i):

"""Return the element at index ‘i’ of recursive list ‘s’.

>>> L = make rlist(2, make rlist(3, make rlist (4)))

>>> getitem rlist(L, 1)

3"""

if :

return

else:

return

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 7

getitem rlist (II)

• Want to extract item #k from an rlist (number from 0).

• Recursively:

def getitem rlist(s, i):

"Return the element at index ‘i’ of recursive list ‘s’."

if i == 0:

return first(s)

else:

return getitem rlist(rest(s), i-1)

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 8

Iterative Version of getitem rlist

• Want to extract item #k from an rlist (number from 0).

• Recursively:

def getitem rlist(s, i):

"Return the element at index ‘i’ of recursive list ‘s’."

if i == 0:

return first(s)

else:

return getitem rlist(rest(s), i-1)

def getitem rlist(s, i):

"Return the element at index ‘i’ of recursive list ‘s’."

while :

, =

return

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 9

Iterative Version of getitem rlist (II)

def getitem rlist(s, i):

"Return the element at index ‘i’ of recursive list ‘s’."

if i == 0:

return first(s)

else:

return getitem rlist(rest(s), i-1)

def getitem rlist(s, i):

"Return the element at index ‘i’ of recursive list ‘s’."

while i != 0:

s, i = rest(s), i-1

return first(s)

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 10

On to Higher Orders!

def map rlist(f, s):

"""The rlist of values F(x) for each element x of rlist

S (in the same order.)"""

if :

return

else:

return

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 11

Map implemented

def map rlist(f, s):

"""The rlist of values F(x) for each element x of rlist

S (in the same order.)"""

if isempty(s):

return empty rlist

else:

return make rlist(f(first(s)), map rlist(f, rest(s)))

• So map rlist(lambda x:x**2, L) produces a list of squares.

• [Python 3 produces a different kind of result from its map function;
we’ll get to it.]

• Iterative version not so easy here!

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 12

Filtering

• Map unconditionally applies its function argument to elements of a
list. It is essentially a loop.

• The analog of applying an if statement to items in a list is called
filtering:

def filter rlist(cond, seq):

"""The rlist consisting of the subsequence of

rlist ‘seq’ for which the 1-argument function ‘cond’

returns a true value."""

if ?? : return ??

elif : return

else: return

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 13

Filtering (II)

def filter rlist(cond, seq):

"""The rlist consisting of the subsequence of

rlist ‘seq’ for which the 1-argument function ‘cond’

returns a true value."""

if isempty(seq): return empty rlist

elif ?? : return

else: return

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 14

Filtering (III)

def filter rlist(cond, seq):

"""The rlist consisting of the subsequence of

rlist ‘seq’ for which the 1-argument function ‘cond’

returns a true value."""

if isempty(seq): return empty rlist

elif cond(first(seq)): return

else: return ??

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 15

Filtering (IV)

def filter rlist(cond, seq):

"""The rlist consisting of the subsequence of

rlist ‘seq’ for which the 1-argument function ‘cond’

returns a true value."""

if isempty(seq): return empty rlist

elif cond(first(seq)): ??

else: return filter rlist(cond, rest(seq))

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 16

Filtering (V)

def filter rlist(cond, seq):

"""The rlist consisting of the subsequence of

rlist ‘seq’ for which the 1-argument function ‘cond’

returns a true value."""

if isempty(seq): return empty rlist

elif cond(first(seq)):

return make rlist(first(seq),

filter rlist(cond, rest(seq)))

else: return filter rlist(cond, rest(seq))

• Oops! Not tail-recursive. Iteration is problematic (again).

• In fact, until we get to talking about mutable recursive lists, we
won’t be able to do it iteratively without creating an extra list along
the way.

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 17

Python’s Sequences

• Rlists are sequences with a particular choice of interface that em-
phasizes their recursive structure.

• Python has a much different approach to sequences built into its
standard data structures, one that emphasizes their iterative char-
acteristics.

• There are several different kinds of sequence embodied in the stan-
dard types: tuples, lists, strings, ranges, iterators, and generators.

• Python goes to some lengths to provide a uniform interface to all
the various sequence types, as well as to its other collection types,
including sets and dictionaries.

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 18

Sequence Features

• For now, we emphasize computation by construction rather than
modification. The interesting characteristics include:

– Explicit Construction:
t = (2, 0, 9, 10, 11) # Tuple

L = [2, 0, 9, 10, 11] # List

R = range(2, 13) # Integers 2-12.

R0 = range(13) # Integers 0-12.

E = range(2, 13, 2) # Even integers 2-12.

S = "Hello, world!" # Strings (sequences of characters)

– Indexing:
t[2] == L[2] == 9, R[2] == 4, E[2] == 6

t[-1] == t[len(t)-1] == 11

S[1] == "e"

– Slicing:

t[1:4] == (t[1], t[2], t[3]) == (0, 9, 10),

t[2:] == t[2:len(t)] == (9, 10, 11)

t[::2] == t[0:len(t):2] == (2, 9, 11), t[::-1] == (11, 10, 9, 0, 2)

S[0:5] == "Hello", S[0:5:2] == "Hlo", S[4::-1] == "olleH"

R[2:5] = range(4, 7), E[1 : 5] = range(4, 12, 2)

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 19

Sequence Combination and Conversion

• Sequence types can be converted into each other where needed:

list((1, 2, 3)) == [1, 2, 3], tuple([1, 2, 3]) == (1, 2, 3)

list(range(2, 10, 2)) == [2, 4, 6, 8]

list("ABCD") = [’A’, ’B’, ’C’, ’D’]

• One can construct certain sequences (tuples, lists, strings) from
smaller ones:

A = [1, 2, 3, 4]

B = [7, 8, 9]

A + B == [1, 2, 3, 4, 7, 8, 9]

A[1:3] + B[1:] = [1, 2, 3, 8, 9]

(1, 2, 3, 4) + (7, 8, 9) = (1, 2, 3, 4, 7, 8, 9)

"Hello," + " " + "world" = "Hello, world"

(1, 2, 3, 4) + 3 ERROR (why?)

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 20

Sequence Iteration: For Loops

• We can write more compact and clear versions of while loops:

>>> t = (2, 0, 9, 10, 11)

>>> s = 0

>>> for x in t:

>>> s += x

>>> print(s)

32

• Iteration over numbers is really the same, conceptually:

>>> s = 0

>>> for i in range(1, 10):

>>> s += i

>>> print(s)

45

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 21

Higher-Order Manipulation of Sequences

• Python 3 defines map (just as on rlists), as well as accumulate (called
reduce in the module functools), and filter, just as we did on
rlists.

• So to compute the sum of the even Fibonacci numbers among the
first 12 numbers of that sequence, we could proceed like this:

First 20 integers:

0 1 2 3 4 5 6 7 8 9 10 11

Map fib:

0 1 1 2 3 5 8 13 21 34 55 89

Filter to get even numbers:

0 2 8 34

Reduce to get sum:

44

• . . . or:
reduce(add, filter(iseven, map(fib, range(12)))) # or

sum(filter(iseven, map(fib, range(12)))) # Specialized reduction

• Why is this important? Sequences are amenable to parallelization.

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 22

List Comprehensions

• In fact, one doesn’t often need map and filter because Python has
a succinct syntax for expressing their application: the list compre-
hension.

• Full form:

[<expression> for <var> in <sequence expression>

if <boolean expression>]

• Example: Squares of the prime numbers up to 100.

[x*x for x in range(101) if isprime(x)]

• A different variety is the generator, which can be useful in reduc-
tions:

sum((x*x for x in range(101) if isprime(x)))

. . . because it does not actually construct the list. More on genera-
tors later.

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 23

An aside: Sequences in Unix

• Many Unix utilities operate on streams of characters, which are
sequences.

• With the help of pipes, one can do amazing things. One of my fa-
vorites:

tr -c -s ’[:alpha:]’ ’[\n*]’ < FILE | \

sort | \

uniq -c | \

sort -n -r -k 1,1 | \

sed 20q

which prints the 20 most frequently occuring words in FILE, with
their frequencies, most frequent first.

Last modified: Sun Feb 19 15:58:08 2017 CS61A: Lecture #9 24

	Lecture #9: Sequences
	A Recursive Definition
	Implementation With Pairs
	Implementation With Pairs (II)
	Box-and-Pointer Diagrams for Linked Lists
	From Recursive Structure to Recursive Algorithm
	Another Example: Selection
	getitem_rlist (II)
	Iterative Version of getitem_rlist
	Iterative Version of getitem_rlist (II)
	On to Higher Orders!
	Map implemented
	Filtering
	Filtering (II)
	Filtering (III)
	Filtering (IV)
	Filtering (V)
	Python's Sequences
	Sequence Features
	Sequence Combination and Conversion
	Sequence Iteration: For Loops
	Higher-Order Manipulation of Sequences
	List Comprehensions
	An aside: Sequences in Unix

