Lecture \#9: Sequences

- The term sequence refers generally to a data structure consisting of an indexed collection of values.
- That is, there is a first, second, third value (which CS types call \#0, \#1, \#2, etc.
- A sequence may be finite (with a length) or infinite.
- As an object, it may be mutable (elements can change) or immutable.
- There are numerous alternative interfaces (i.e., sets of operations) for manipulating it.
- And, of course, numerous alternative implementations.
- Today: immutable, finite sequences, recursively defined.

A Recursive Definition

- A possible definition: A sequence consists of
- An empty sequence, or
- A first element and a sequence consisting of the elements of the sequence other than the first-the rest of the sequence or tail.
- The definition is clearly recursive ("a sequence consists of ...a sequence ..."), so let's call it an rlist for now.
- Suggests the following ADT interface:

```
empty_rlist = ...
def make_rlist(first, rest = empty_rlist):
    """A recursive list, r, such that first(r) is FIRST and
    rest(r) is REST, which must be an rlist."""
def first(r):
    """The first item in R."""
def rest(r):
    """The tail of R."""
def isempty(r):
    """True iff R is the empty sequence"""
```


Implementation With Pairs

- An obvious implementation uses two-element tuples (pairs), such as those defined in lecture 8.
- The result is called a linked list.

```
empty_rlist = None
def make_rlist(first, rest = empty_rlist):
        return cons(first, rest)
def first(r):
    return left(r)
def rest(r):
    return right(r)
def isempty(r):
    return r is None
```


Implementation With Pairs (II)

- This implementation is rather trivial. Basically, we've dnne nothing but give new names to the functions in the pair interface defined in lecture 8.
- In fact, we could have defined everything like this:

```
empty_rlist = None
make_rlist = cons
first = left
rest = right
def isempty(r):
    return r is None
```


Box-and-Pointer Diagrams for Linked Lists

- Diagrammatically, one gets structures like this:

```
# The sequence containing: 8; the sequence containing 5 and 3;
# and the empty sequence
Q = make_rlist(5, make_rlist(3, empty_rlist))
L = make_rlist(8,
    make_rlist(Q, make_rlist(empty_rlist, empty_rlist)))
# or
# Q = make_rlist(5, make_rlist(3))
# L = make_rlist(8, make_rlist(Q, make_rlist(empty_rlist)))
```


From Recursive Structure to Recursive Algorithm

- The cases in the recursive definition of list often suggest a recursive approach to implementing functions on them.
- Example: length of an rlist:

```
def len_rlist(s): # A sequence is:
    """The length of rlist 's'."""
    if isempty(s): # Empty or...
    else:
    return 1 + len_rlist(rest(s))
    # A first element and
    # the rest of the list
```

- Q: Why do we know the comment is accurate?
- A: Because we assume the comment is accurate! (For "smaller" arguments, that is).
- An example of reasoning by structural induction...
- ... or recursive thinking about data structures.

Another Example: Selection

- Want to extract item \#k from an rlist (number from 0).
- Recursively:

```
def getitem_rlist(s, i):
    """Return the element at index 'i' of recursive list 's'.
    >>> L = make_rlist(2, make_rlist(3, make_rlist (4)))
    >>> getitem_rlist(L, 1)
    3"""
```

\qquad

``` :
            return
```

\qquad

```
    else:
        return
```

\qquad

getitem_rlist (II)

- Want to extract item \#k from an rlist (number from 0).
- Recursively:

```
def getitem_rlist(s, i):
    "Return the element at index 'i' of recursive list 's'."
    if i == 0:
        return first(s)
    else:
            return getitem_rlist(rest(s), i-1)
```


Iterative Version of getitem_rlist

- Want to extract item \#k from an rlist (number from 0).
- Recursively:

```
def getitem_rlist(s, i):
    "Return the element at index 'i' of recursive list 's'."
    if i == 0:
        return first(s)
    else:
            return getitem_rlist(rest(s), i-1)
def getitem_rlist(s, i):
    "Return the element at index 'i' of recursive list 's'."
    while
```

\qquad

``` :
return
``` \(\qquad\)

\section*{Iterative Version of getitem rlist (II)}
```

def getitem_rlist(s, i):
"Return the element at index 'i' of recursive list 's'."
if i == 0:
return first(s)
else:
return getitem_rlist(rest(s), i-1)
def getitem_rlist(s, i):
"Return the element at index 'i' of recursive list 's'."
while i != 0:
s, i = rest(s), i-1
return first(s)

```

\section*{On to Higher Orders!}
```

def map_rlist(f, s):
"""The rlist of values F(x) for each element x of rlist
S (in the same order.)"""
if

```
\(\qquad\)
``` :
    else:
```

 return
 \qquad

Map implemented

```
def map_rlist(f, s):
    """The rlist of values F(x) for each element x of rlist
        S (in the same order.)"""
    if isempty(s):
        return empty_rlist
    else:
        return make_rlist(f(first(s)), map_rlist(f, rest(s)))
```

- So map_rlist(lambda $\mathrm{x}: \mathrm{x} * * 2$, L) produces a list of squares.
- [Python 3 produces a different kind of result from its map function; we'll get to it.]
- Iterative version not so easy here!

Filtering

- Map unconditionally applies its function argument to elements of a list. It is essentially a loop.
- The analog of applying an if statement to items in a list is called filtering:

```
def filter_rlist(cond, seq):
    """The rlist consisting of the subsequence of
    rlist 'seq' for which the 1-argument function 'cond'
    returns a true value."""
    if ?_?_: return ??
    elif
```

\qquad

``` : return
``` \(\qquad\)
```

else: return

```
\(\qquad\)

\section*{Filtering (II)}
```

def filter_rlist(cond, seq):
"""The rlist consisting of the subsequence of
rlist 'seq' for which the 1-argument function 'cond'
returns a true value."""
if isempty(seq): return empty_rlist
elif _??_: return

```
\(\qquad\)
```

    else: return
    ```
\(\qquad\)

\section*{Filtering (III)}
```

def filter_rlist(cond, seq):
"""The rlist consisting of the subsequence of
rlist 'seq' for which the 1-argument function 'cond'
returns a true value."""
if isempty(seq): return empty_rlist
elif cond(first(seq)): return

```
\(\qquad\)
```

    else: return ??
    ```

\section*{Filtering (IV)}
```

def filter_rlist(cond, seq):
"""The rlist consisting of the subsequence of
rlist 'seq' for which the 1-argument function 'cond'
returns a true value."""
if isempty(seq): return empty_rlist
elif cond(first(seq)): __?
else: return filter_rlist(cond, rest(seq))

```

\section*{Filtering (V)}
```

def filter_rlist(cond, seq):
"""The rlist consisting of the subsequence of
rlist 'seq' for which the 1-argument function 'cond'
returns a true value."""
if isempty(seq): return empty_rlist
elif cond(first(seq)):
return make_rlist(first(seq),
filter_rlist(cond, rest(seq)))
else: return filter_rlist(cond, rest(seq))

```
- Oops! Not tail-recursive. Iteration is problematic (again).
- In fact, until we get to talking about mutable recursive lists, we won't be able to do it iteratively without creating an extra list along the way.

\section*{Python's Sequences}
- Rlists are sequences with a particular choice of interface that emphasizes their recursive structure.
- Python has a much different approach to sequences built into its standard data structures, one that emphasizes their iterative characteristics.
- There are several different kinds of sequence embodied in the standard types: tuples, lists, strings, ranges, iterators, and generators.
- Python goes to some lengths to provide a uniform interface to all the various sequence types, as well as to its other collection types, including sets and dictionaries.

\section*{Sequence Features}
- For now, we emphasize computation by construction rather than modification. The interesting characteristics include:

\section*{- Explicit Construction:}
```

t = (2, 0, 9, 10, 11) \# Tuple
L = [2, 0, 9, 10, 11] \# List
R = range (2, 13) \# Integers 2-12.
R0 = range(13) \# Integers 0-12.
E = range(2, 13, 2) \# Even integers 2-12.
S = "Hello, world!" \# Strings (sequences of characters)

```

\section*{- Indexing:}
```

$\mathrm{t}[2]=\mathrm{L}[2]==9, \mathrm{R}[2]==4, \mathrm{E}[2]==6$
$\mathrm{t}[-1]==\mathrm{t}[\operatorname{len}(\mathrm{t})-1]==11$
S[1] == "e"

```
- Slicing:
```

$t[1: 4]==(t[1], t[2], t[3])==(0,9,10)$,
$\mathrm{t}[2:]==\mathrm{t}[2: \operatorname{len}(\mathrm{t})]==(9,10,11)$
$\mathrm{t}[:: 2]==\mathrm{t}[0: \operatorname{len}(\mathrm{t}): 2]==(2,9,11), \mathrm{t}[::-1]==(11,10,9,0,2)$
S[0:5] == "Hello", S[0:5:2] == "Hlo", S[4::-1] == "olleH"
$\mathrm{R}[2: 5]=$ range $(4,7), \mathrm{E}[1: 5]=$ range $(4,12,2)$

```

\section*{Sequence Combination and Conversion}
- Sequence types can be converted into each other where needed:
```

list( (1, 2, 3) ) == [1, 2, 3], tuple([1, 2, 3]) == (1, 2, 3)
list(range(2, 10, 2)) == [2, 4, 6, 8]
list("ABCD") = ['A', 'B', 'C', 'D']

```
- One can construct certain sequences (tuples, lists, strings) from smaller ones:
```

A = [ 1, 2, 3, 4 ]
B = [7, 8, 9 ]
A + B == [ 1, 2, 3, 4, 7, 8, 9 ]
A[1:3] + B[1:] = [ 1, 2, 3, 8, 9]
(1, 2, 3, 4 ) + (7, 8, 9) = (1, 2, 3, 4, 7, 8, 9)
"Hello," + " " + "world" = "Hello, world"
(1, 2, 3, 4) + 3 ERROR (why?)

```

\section*{Sequence Iteration: For Loops}
- We can write more compact and clear versions of while loops:
```

>>> t = (2, 0, 9, 10, 11)
>>> s = 0
>>> for x in t:
>>> s += x
>>> print(s)
32

```
- Iteration over numbers is really the same, conceptually:
```

>>> s = 0
>>> for i in range(1, 10):
>>> s += i
>>> print(s)

```
45

\section*{Higher-Order Manipulation of Sequences}
- Python 3 defines map (just as on rlists), as well as accumulate (called reduce in the module functools), and filter, just as we did on rlists.
- So to compute the sum of the even Fibonacci numbers among the first 12 numbers of that sequence, we could proceed like this:
```

First 20 integers:
Map fib:
0
Filter to get even numbers:

| 0 | 2 | 8 |
| :--- | :--- | :--- | :--- |

Reduce to get sum:
4 4

```
- . . . or:
```

    reduce(add, filter(iseven, map(fib, range(12)))) # or
    sum(filter(iseven, map(fib, range(12)))) # Specialized reduction
    ```
- Why is this important? Sequences are amenable to parallelization.

\section*{List Comprehensions}
- In fact, one doesn't often need map and filter because Python has a succinct syntax for expressing their application: the list comprehension.
- Full form:
```

[ <expression> for <var> in <sequence expression>
if <boolean expression> ]

```
- Example: Squares of the prime numbers up to 100.
[\(\mathrm{x} * \mathrm{x}\) for x in range(101) if isprime(x)]
- A different variety is the generator, which can be useful in reductions:
sum((\(\mathrm{x} * \mathrm{x}\) for x in range(101) if isprime(x)))
... because it does not actually construct the list. More on generators later.

\section*{An aside: Sequences in Unix}
- Many Unix utilities operate on streams of characters, which are sequences.
- With the help of pipes, one can do amazing things. One of my favorites:
```

    tr -c -s '[:alpha:]' '[\n*]' < FILE | \
    sort |
    uniq -c | \
    sort -n -r -k 1,1 | \
    sed 20q

```
which prints the 20 most frequently occuring words in FILE, with their frequencies, most frequent first.```

