Lecture #8: More on Functions

Another Recursion Problem: Counting Partitions

- I'd like to know the number of distinct ways of expressing an integer as a sum of positive integer "parts."
- To make things more interesting, let's also limit the size of the integer parts to some given value:

```
def num_partitions(n, k):
    """Number of distinct ways to express N as a sum of positive
    integers each of which is <= K, where K > 0. (The empty sum is 0.)"""
```

```
• Example:
```

$$o6 = 3 + 3$$

= 3 + 2 + 1
= 3 + 1 + 1 + 1
= 2 + 2 + 2
= 2 + 2 + 1 + 1
= 2 + 1 + 1 + 1 + 1
= 1 + 1 + 1 + 1 + 1

so num_partitions(6, 3) is 7.

 \mathcal{X}

Identifying the Problem in the Problem

- Again, consider num_partitions(6, 3).
- Some partitions will contain the maximum size integer, 3, and the rest won't.
- Those that do contain 3 then have various ways to partition the remaining 3.

```
3 + 3
3 + 2 + 1
3 + 1 + 1 + 1
```

- While those that do not contain 3 partition 6 using integers no larger than 2:
 - 2 + 2 + 2 2 + 2 + 1 + 1 2 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1
- These observation generalize, and lead immediately to a solution.

Counting Partitions: Code (I)

def	<pre>num_partitions(n, k):</pre>
	"""Number of distinct ways to express N as a sum of positive
	integers each of which is <= K, where K > 0. (The empty sum is 0.)"""
	if:
	return O
	elif:
	return 1
	else:
	return:

Counting Partitions: Code (II)

def	<pre>num_partitions(n, k): """Number of distinct ways to express N>=0 as a sum of positive integers each of which is <= K, where K > 0. (The empty sum is 0.)"""</pre>
	if n < 0:
	return O
	elif:
	return 1
	else:
	return:

Counting Partitions: Code (III)

```
def num_partitions(n, k):
    """Number of distinct ways to express N>=0 as a sum of positive % \mathcal{N} = 0
    integers each of which is <= K, where K > 0. (The empty sum is 0.)"""
    if n < 0:
       return 0
    elif k == 1 or n \leq 1:
      return 1
    else:
      return _____:
```

Counting Partitions: Code (IV)

```
def num_partitions(n, k):
    """Number of distinct ways to express N>=0 as a sum of positive
    integers each of which is <= K, where K > 0. (The empty sum is 0.)"""
    if n < 0:
        return 0
    elif k == 1 or n \leq 1:
       return 1
    else:
       return num_partitions(n - k, k) + num_partitions(n, k - 1)
```

Functions and Data

- We tend to think of functions as simply doing or computing something with data.
- In fact, they can also represent or contain data themselves.
- Trivial example:

```
>>> def const(n):
... return lambda: n
>>> x, y = const(5), const(11)
>>> print(x(), y())
5 11
```

• The functions returned by const contain pointers to the local frames created when const was called, which in turn contain copies of the argument values (5 and 11).

Functions and Data (II)

• We can get a bit fancier:

```
>>> def cons(left, right):
... return lambda which: left if which else right
>>> P = cons("value", 42)
>>> print(P(True), P(False))
value 42
>>> L = cons(1, cons(2, cons(3, None)))
>>> print(L(True), L(False)(True), L(False)(False)(True),
... L(False)(False)(False))
1 2 3 None
```

(See the chain example at the end of Lecture #4.)

• So, in effect, values returned by cons are lists of values.

The Pair Abstraction

- However, writing P(True) for "the left part of P" is not the clearest code one could imagine.
- Better to express the programmer's intent:

```
>>> def cons(left, right):
... return lambda which: left if which else right
>>> def left(pair): return pair(True)
>>> def right(pair): return pair(False)
>>> P = cons("value", 42)
>>> print(left(P), right(P))
value 42
```

- Together, these three functions define a data type.
- The data (pairs) are represented by functions returned by cons.
- left and right are the basic operations on the data type.
- If we use these cons, left, and right and three functions and ignore the fact that cons really produces a function rather than a pair, we are obeying the abstraction barrier.

Data Abstraction Philosophy

- In the old days, one described programs as hierarchies of actions: *procedural decomposition*.
- Starting in the 1970's, emphasis moved to the data that the functions operate on.
- An *abstract data type (ADT)* (like the pair abstraction) represents some kind of thing and the operations upon it.
- Instances of the type are often generically called *objects*.
- We can usefully organize our programs around the ADTs in them.
- For each type, we define an *interface* that describes for users ("clients") of that type of data what operations are available.
- Typically, the interface consists of functions.
- The collection of specifications (syntactic and semantic—see lecture #6) constitute a *specification of the type*.
- We call ADTs abstract because clients ideally need not know internals.

Rational Numbers

• The book uses "rational number" as an example of an ADT:

```
def make_rat(n, d):
    """The rational number n/d, assuming n, d are integers, d!=0"""
```

```
def add_rat(x, y):
    """The sum of rational numbers x and y."""
```

```
def mul_rat(x, y):
    """The product of rational numbers x and y."""
```

```
def numer(r):
```

```
"""The numerator of rational number r."""
```

```
def denom(r):
    """The denominator of rational number r."""
```

- These definitions pretend that x, y, and r really are rational numbers.
- But from this point of view, the definitions of numer and denom are problematic. Why?

A Better Specification

- \bullet Problem is that "the numerator (denominator) of r'' is not well-defined for a rational number.
- If make_rat really produced rational numbers, then make_rat(2, 4) and make_rat(1, 2) ought to be identical. So should make_rat(1, -1) and make_rat(-1, 1).
- So a better specification would be

```
def numer(r):
    """The numerator of rational number r in lowest terms."""
def denom(r):
    """The denominator of rational number r in lowest terms.
    Always positive."""
```

Rationals as Pairs (I)

• Our pair abstraction (represented by functions) can in turn represent rational numbers.

```
from math import gcd # Need Python3.5 actually.
def make_rat(n, d):
    """The rational number n/d, assuming n, d are integers, d!=0"""
    g = gcd(n, d) if d > 0 else -gcd(n, d)
   n //= g; d //= g
    return cons(n, d)
def numer(r):
    """The numerator of rational number r."""
    return left(r)
def denom(r):
    """The denominator of rational number r."""
    return right(r)
def add_rat(x, y):
    """The sum of rational numbers x and y."""
    return ?
def mul_rat(x, y):
    """The product of rational numbers x and y."""
```

```
Last modified: Sun Feb 19 15:44:29 2017
```

return ?

Representation as Functions (II)

• One possibility for add_rat:

from math import gcd

```
def make_rat(n, d):
    """The rational number n/d, assuming n, d are integers, d!=0"""
    g = gcd(n, d) if d > 0 else -gcd(n, d)
    n //= g; d //= g
    return lambda flag: n if flag == 0 else d
...
def add_rat(x, y):
    n0, n1, d0, d1 = x(0), y(0), x(1), y(1)
    n, d = n0 * d1 + n1 * d0, d0 * d1
    g = gcd(n, d) if d > 0 else -gcd(n, d)
    n //= g; d //= g
    return lambda flag: n if flag == 0 else d
```

• Comments?

Abstraction Violations and DRY

- Having created an abstraction (make_rat, numer, denom), use it:
 - Then, later changes of representation will affect less code.
 - Code will be clearer, since well-chosen names in the API make intent clear.

```
def mul_rat(x, y):
    """The product of rational numbers x and y."""
    return make_rat(numer(x) * numer(y), denom(x) * denom(y))
```

. . .

Changing Representations

- It's cute that functions can represent pairs (or anything else, for that matter), but it's not a particularly efficient use of the them.
- Suppose that we instead decide to use Python's tuples. What changes?

```
def cons(left, right):
    return (left, right)
def left(pair): return pair[0]
def right(pair): return pair[1]
```

• Crucial Observation: Nothing else changes!