
Lecture #8: More on Functions

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 1



Another Recursion Problem: Counting Partitions

• I’d like to know the number of distinct ways of expressing an integer
as a sum of positive integer “parts.”

• To make things more interesting, let’s also limit the size of the in-
teger parts to some given value:

def num partitions(n, k):

"""Number of distinct ways to express N as a sum of positive

integers each of which is <= K, where K > 0. (The empty sum is 0.)"""

• Example:

xo6 = 3 + 3

= 3 + 2 + 1

= 3 + 1 + 1 + 1

= 2 + 2 + 2

= 2 + 2 + 1 + 1

= 2 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1

so num partitions(6, 3) is 7.

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 2



Identifying the Problem in the Problem

• Again, consider num partitions(6, 3).

• Some partitions will contain the maximum size integer, 3, and the
rest won’t.

• Those that do contain 3 then have various ways to partition the
remaining 3.

3 + 3

3 + 2 + 1

3 + 1 + 1 + 1

• While those that do not contain 3 partition 6 using integers no larger
than 2:

2 + 2 + 2

2 + 2 + 1 + 1

2 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1

• These observation generalize, and lead immediately to a solution.

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 3



Counting Partitions: Code (I)

def num partitions(n, k):

"""Number of distinct ways to express N as a sum of positive

integers each of which is <= K, where K > 0. (The empty sum is 0.)"""

if :

return 0

elif :

return 1

else:

return :

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 4



Counting Partitions: Code (II)

def num partitions(n, k):

"""Number of distinct ways to express N>=0 as a sum of positive

integers each of which is <= K, where K > 0. (The empty sum is 0.)"""

if n < 0:

return 0

elif :

return 1

else:

return :

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 5



Counting Partitions: Code (III)

def num partitions(n, k):

"""Number of distinct ways to express N>=0 as a sum of positive

integers each of which is <= K, where K > 0. (The empty sum is 0.)"""

if n < 0:

return 0

elif k == 1 or n <= 1:

return 1

else:

return :

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 6



Counting Partitions: Code (IV)

def num partitions(n, k):

"""Number of distinct ways to express N>=0 as a sum of positive

integers each of which is <= K, where K > 0. (The empty sum is 0.)"""

if n < 0:

return 0

elif k == 1 or n <= 1:

return 1

else:

return num partitions(n - k, k) + num partitions(n, k - 1)

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 7



Functions and Data

• We tend to think of functions as simply doing or computing some-
thing with data.

• In fact, they can also represent or contain data themselves.

• Trivial example:

>>> def const(n):

... return lambda: n

>>> x, y = const(5), const(11)

>>> print(x(), y())

5 11

• The functions returned by const contain pointers to the local frames
created when const was called, which in turn contain copies of the
argument values (5 and 11).

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 8



Functions and Data (II)

• We can get a bit fancier:

>>> def cons(left, right):

... return lambda which: left if which else right

>>> P = cons("value", 42)

>>> print(P(True), P(False))

value 42

>>> L = cons(1, cons(2, cons(3, None)))

>>> print(L(True), L(False)(True), L(False)(False)(True),

... L(False)(False)(False))

1 2 3 None

(See the chain example at the end of Lecture #4.)

• So, in effect, values returned by cons are lists of values.

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 9



The Pair Abstraction

• However, writing P(True) for “the left part of P” is not the clearest
code one could imagine.

• Better to express the programmer’s intent:

>>> def cons(left, right):

... return lambda which: left if which else right

>>> def left(pair): return pair(True)

>>> def right(pair): return pair(False)

>>> P = cons("value", 42)

>>> print(left(P), right(P))

value 42

• Together, these three functions define a data type.

• The data (pairs) are represented by functions returned by cons.

• left and right are the basic operations on the data type.

• If we use these cons, left, and right and three functions and ig-
nore the fact that cons really produces a function rather than a
pair, we are obeying the abstraction barrier.

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 10



Data Abstraction Philosophy

• In the old days, one described programs as hierarchies of actions:
procedural decomposition.

• Starting in the 1970’s, emphasis moved to the data that the func-
tions operate on.

• An abstract data type (ADT) (like the pair abstraction) represents
some kind of thing and the operations upon it.

• Instances of the type are often generically called objects.

• We can usefully organize our programs around the ADTs in them.

• For each type, we define an interface that describes for users
(“clients”) of that type of data what operations are available.

• Typically, the interface consists of functions.

• The collection of specifications (syntactic and semantic—see lec-
ture #6) constitute a specification of the type.

• We call ADTs abstract because clients ideally need not know inter-
nals.

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 11



Rational Numbers

• The book uses “rational number” as an example of an ADT:

def make rat(n, d):

"""The rational number n/d, assuming n, d are integers, d!=0"""

def add rat(x, y):

"""The sum of rational numbers x and y."""

def mul rat(x, y):

"""The product of rational numbers x and y."""

def numer(r):

"""The numerator of rational number r."""

def denom(r):

"""The denominator of rational number r."""

• These definitions pretend that x, y, and r really are rational num-
bers.

• But from this point of view, the definitioins of numer and denom are
problematic. Why?

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 12



A Better Specification

• Problem is that “the numerator (denominator) of r” is not well-defined
for a rational number.

• If make rat really produced rational numbers, then make rat(2, 4)

and make rat(1, 2) ought to be identical. So should make rat(1,

-1) and make rat(-1, 1).

• So a better specification would be

def numer(r):

"""The numerator of rational number r in lowest terms."""

def denom(r):

"""The denominator of rational number r in lowest terms.

Always positive."""

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 13



Rationals as Pairs (I)

• Our pair abstraction (represented by functions) can in turn repre-
sent rational numbers.
from math import gcd # Need Python3.5 actually.

def make rat(n, d):

"""The rational number n/d, assuming n, d are integers, d!=0"""

g = gcd(n, d) if d > 0 else -gcd(n, d)

n //= g; d //= g

return cons(n, d)

def numer(r):

"""The numerator of rational number r."""

return left(r)

def denom(r):

"""The denominator of rational number r."""

return right(r)

def add rat(x, y):

"""The sum of rational numbers x and y."""

return ?

def mul rat(x, y):

"""The product of rational numbers x and y."""

return ?

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 14



Representation as Functions (II)

• One possibility for add rat:

from math import gcd

def make rat(n, d):

"""The rational number n/d, assuming n, d are integers, d!=0"""

g = gcd(n, d) if d > 0 else -gcd(n, d)

n //= g; d //= g

return lambda flag: n if flag == 0 else d

...

def add rat(x, y):

n0, n1, d0, d1 = x(0), y(0), x(1), y(1)

n, d = n0 * d1 + n1 * d0, d0 * d1

g = gcd(n, d) if d > 0 else -gcd(n, d)

n //= g; d //= g

return lambda flag: n if flag == 0 else d

• Comments?

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 15



Abstraction Violations and DRY

• Having created an abstraction (make rat, numer, denom), use it:

– Then, later changes of representation will affect less code.

– Code will be clearer, since well-chosen names in the API make
intent clear.

...

def add rat(x, y):

return make rat(numer(x) * denom(y) + numer(y) * denom(x),

denom(x) * denom(y))

def mul rat(x, y):

"""The product of rational numbers x and y."""

return make rat(numer(x) * numer(y), denom(x) * denom(y))

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 16



Changing Representations

• It’s cute that functions can represent pairs (or anything else, for
that matter), but it’s not a particularly efficient use of the them.

• Suppose that we instead decide to use Python’s tuples. What changes?

def cons(left, right):

return (left, right)

def left(pair): return pair[0]

def right(pair): return pair[1]

• Crucial Observation: Nothing else changes!

Last modified: Sun Feb 19 15:44:29 2017 CS61A: Lecture #8 17


	Lecture #8: More on Functions
	Another Recursion Problem: Counting Partitions
	Identifying the Problem in the Problem
	Counting Partitions: Code (I)
	Counting Partitions: Code (II)
	Counting Partitions: Code (III)
	Counting Partitions: Code (IV)
	Functions and Data
	Functions and Data (II)
	The Pair Abstraction
	Data Abstraction Philosophy
	Rational Numbers
	A Better Specification
	Rationals as Pairs (I)
	Representation as Functions (II)
	Abstraction Violations and DRY
	Changing Representations

