Lecture \#8: More on Functions

Another Recursion Problem: Counting Partitions

- I'd like to know the number of distinct ways of expressing an integer as a sum of positive integer "parts."
- To make things more interesting, let's also limit the size of the integer parts to some given value:

```
def num_partitions(n, k):
    """Number of distinct ways to express N as a sum of positive
    integers each of which is <= K, where K > 0. (The empty sum is 0.)"""
```

- Example:

$$
\begin{aligned}
x o 6 & =3+3 \\
& =3+2+1 \\
& =3+1+1+1 \\
& =2+2+2 \\
& =2+2+1+1 \\
& =2+1+1+1+1 \\
& =1+1+1+1+1+1
\end{aligned}
$$

so num_partitions $(6,3)$ is 7 .

Identifying the Problem in the Problem

- Again, consider num_partitions (6, 3).
- Some partitions will contain the maximum size integer, 3, and the rest won't.
- Those that do contain 3 then have various ways to partition the remaining 3.

```
3+3
3+2+1
3+1+1+1
```

- While those that do not contain 3 partition 6 using integers no larger than 2:

$$
\begin{aligned}
& 2+2+2 \\
& 2+2+1+1 \\
& 2+1+1+1+1 \\
& 1+1+1+1+1+1
\end{aligned}
$$

- These observation generalize, and lead immediately to a solution.

Counting Partitions: Code (I)

```
def num_partitions(n, k):
    """Number of distinct ways to express N as a sum of positive
    integers each of which is <= K, where K > 0. (The empty sum is 0.)"""
    if
```

\qquad

``` :
            return 0
    elif
```

\qquad

``` :
        return 1
    else:
        return
```

\qquad

``` :
```


Counting Partitions: Code (II)

```
def num_partitions(n, k):
    """Number of distinct ways to express N>=0 as a sum of positive
    integers each of which is <= K, where K > 0. (The empty sum is 0.)"""
    if n < 0:
            return 0
    elif
```

\qquad

``` :
        return 1
    else:
\(\qquad\)
``` :
```


## Counting Partitions: Code (III)

```
def num_partitions(n, k):
 """Number of distinct ways to express N>=0 as a sum of positive
 integers each of which is <= K, where K > 0. (The empty sum is 0.)"""
 if n< 0:
 return 0
 elif k == 1 or n <= 1:
 return 1
 else:
 return
```

$\qquad$

``` :
```


## Counting Partitions: Code (IV)

```
def num_partitions(n, k):
 """Number of distinct ways to express N>=0 as a sum of positive
 integers each of which is <= K, where K > 0. (The empty sum is 0.)"""
 if n< 0:
 return 0
 elif k == 1 or n <= 1:
 return 1
 else:
 return num_partitions(n - k, k) + num_partitions(n, k - 1)
```


## Functions and Data

- We tend to think of functions as simply doing or computing something with data.
- In fact, they can also represent or contain data themselves.
- Trivial example:

```
>>> def const(n):
... return lambda: n
>>> x, y = const(5), const(11)
>>> print(x(), y())
511
```

- The functions returned by const contain pointers to the local frames created when const was called, which in turn contain copies of the argument values (5 and 11).


## Functions and Data (II)

- We can get a bit fancier:

```
>>> def cons(left, right):
 return lambda which: left if which else right
>>> P = cons("value", 42)
>>> print(P(True), P(False))
value 42
>>> L = cons(1, cons(2, cons(3, None)))
>>> print(L(True), L(False)(True), L(False)(False)(True),
 L(False)(False)(False))
```

123 None
(See the chain example at the end of Lecture \#4.)

- So, in effect, values returned by cons are lists of values.


## The Pair Abstraction

- However, writing $P$ (True) for "the left part of $P$ " is not the clearest code one could imagine.
- Better to express the programmer's intent:

```
>>> def cons(left, right):
... return lambda which: left if which else right
>>> def left(pair): return pair(True)
>>> def right(pair): return pair(False)
>>> P = cons("value", 42)
>>> print(left(P), right(P))
value 42
```

- Together, these three functions define a data type.
- The data (pairs) are represented by functions returned by cons.
- left and right are the basic operations on the data type.
- If we use these cons, left, and right and three functions and ignore the fact that cons really produces a function rather than a pair, we are obeying the abstraction barrier.


## Data Abstraction Philosophy

- In the old days, one described programs as hierarchies of actions: procedural decomposition.
- Starting in the 1970's, emphasis moved to the data that the functions operate on.
- An abstract data type (ADT) (like the pair abstraction) represents some kind of thing and the operations upon it.
- Instances of the type are often generically called objects.
- We can usefully organize our programs around the ADTs in them.
- For each type, we define an interface that describes for users ("clients") of that type of data what operations are available.
- Typically, the interface consists of functions.
- The collection of specifications (syntactic and semantic-see lecture \#6) constitute a specification of the type.
- We call ADTs abstract because clients ideally need not know internals.


## Rational Numbers

- The book uses "rational number" as an example of an ADT:

```
def make_rat(n, d):
 """The rational number n/d, assuming n, d are integers, d!=0"""
def add_rat(x, y):
 """The sum of rational numbers x and y."""
def mul_rat(x, y):
 """The product of rational numbers x and y."""
def numer(r):
 """The numerator of rational number r."""
def denom(r):
 """The denominator of rational number r."""
```

- These definitions pretend that $\mathrm{x}, \mathrm{y}$, and r really are rational numbers.
- But from this point of view, the definitioins of numer and denom are problematic. Why?


## A Better Specification

- Problem is that "the numerator (denominator) of $r$ " is not well-defined for a rational number.
- If make_rat really produced rational numbers, then make_rat $(2,4)$ and make_rat (1, 2) ought to be identical. So should make_rat(1, -1) and make_rat (-1, 1).
- So a better specification would be

```
def numer(r):
 """The numerator of rational number r in lowest terms."""
def denom(r):
 """The denominator of rational number r in lowest terms.
 Always positive."""
```


## Rationals as Pairs (I)

- Our pair abstraction (represented by functions) can in turn represent rational numbers.

```
from math import gcd # Need Python3.5 actually.
def make_rat(n, d):
 """The rational number n/d, assuming n, d are integers, d!=0"""
 g = gcd(n, d) if d > 0 else - gcd(n, d)
 n //= g; d //= g
 return cons(n, d)
def numer(r):
 """The numerator of rational number r."""
 return left(r)
def denom(r):
 """The denominator of rational number r."""
 return right(r)
def add_rat(x, y):
 """The sum of rational numbers x and y."""
 return ?
def mul_rat(x, y):
 """The product of rational numbers x and y."""
 return ?
```


## Representation as Functions (II)

- One possibility for add_rat:

```
from math import gcd
def make_rat(n, d):
 """The rational number n/d, assuming n, d are integers, d!=0"""
 g = gcd(n, d) if d > 0 else -gcd(n, d)
 n //= g; d //= g
 return lambda flag: n if flag == 0 else d
def add_rat(x, y):
 n0, n1, d0, d1 = x(0), y(0), x(1), y(1)
 n, d = n0 * d1 + n1 * d0, d0 * d1
 g = gcd(n, d) if d > 0 else -gcd(n, d)
 n //= g; d //= g
 return lambda flag: n if flag == 0 else d
```

- Comments?


## Abstraction Violations and DRY

- Having created an abstraction (make_rat, numer, denom), use it:
- Then, later changes of representation will affect less code.
- Code will be clearer, since well-chosen names in the API make intent clear.

```
def add_rat(x, y):
 return make_rat(numer(x) * denom(y) + numer(y) * denom(x),
 denom(x) * denom(y))
def mul_rat(x, y):
 """The product of rational numbers x and y."""
 return make_rat(numer(x) * numer(y), denom(x) * denom(y))
```


## Changing Representations

- It's cute that functions can represent pairs (or anything else, for that matter), but it's not a particularly efficient use of the them.
- Suppose that we instead decide to use Python's tuples. What changes?

```
def cons(left, right):
 return (left, right)
def left(pair): return pair[0]
def right(pair): return pair[1]
```

- Crucial Observation: Nothing else changes!

