
Public-Service Announcement

“Autofocus is Berkeley’s first mobile photography club. Join
us as we build a community of phone photographers at Cal. All
you need to be part is an interest in photography and a mobile
phone!

Infosessions on 2/2 and 2/7. Details at tiny.cc/autofocus”

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 1

tiny.cc/autofocus

Lecture #7: Tree Recursion

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 2

Tree Recursion

• The make gasket function is an example of a tree recursion, where
each call makes multiple recursive calls on itself.

• A linear recursion makes at most one recursive call per call.

• A tail recursion has at most one recursive call per call, and it is the
last thing evaluated.

• A linear recursion such as for sum squares produces the pattern
of calls on the left, while make gasket produces the pattern on the
right—an instance of what we call a tree in computer science.

sum squares(3)

sum squares(2)

sum squares(1)

sum squares(0)

calls

make gasket(,4,)

make gasket(,3,) make gasket(,3,) make gasket(,3,)

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 3

What About This?

What kind of recursion is this?
def find it(f, y, low, high):

"""Given that F is a nondecreasing function on integers,

find a value of x between LOW and HIGH inclusive such that

F(x) == Y. Return None if there isn’t one."""

if low > high:

return None

mid = (low + high) // 2

val = f(mid)

return val == y \

or (val < y and find it(f, y, low, mid-1)) \

or (val > y and find it(f, y, mid+1, high))

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 4

What About This?

What kind of recursion is this? Tail Recursion
def find it(f, y, low, high):

"""Given that F is a nondecreasing function on integers,

find a value of x between LOW and HIGH inclusive such that

F(x) == Y. Return None if there isn’t one."""

if low > high:

return None

mid = (low + high) // 2

val = f(mid)

return val == y \

or (val < y and find it(f, y, low, mid-1)) \

or (val > y and find it(f, y, mid+1, high))

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 5

What About This?

What kind of recursion is this? Tree Recursion
def find it(f, y, low, high):

"""Given that F is a nondecreasing function on integers,

find a value of x between LOW and HIGH inclusive such that

F(x) == Y. Return None if there isn’t one."""

if low > high:

return None

mid = (low + high) // 2

val = f(mid)

return val == y \

or (val < y and find it(f, y, low, mid-1)) \

or (find it(f, y, mid+1, high))

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 6

Finding a Path

• Consider the problem of finding your way through a maze of blocks:

•

×

• From a given starting square, one can move down one level and up to
one column left or right on each step, as long as the square moved
to is unoccupied.

• Problem is to find a path to the bottom layer.

• Diagram shows one path that runs into a dead end and one that es-
capes.

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 7

Path-Finding Program

• Translating the problem into a function specification:

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

x

y
This grid would be represented
by a predicate M where, e.g,
M(0,0), M(1,0), M(1,2),

not M(1, 1), not M(2,2).

Here, is path(M, 5, 6) is true; is path(M, 1, 6) and is path(M,

6, 6) are false.

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 8

is path Solution (I)

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

if :

return

elif :

return

else:

return

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 9

is path Solution (II)

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

if :

return False

elif :

return True

else:

return

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 10

is path Solution (III)

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

if blocked(x0, y0):

return False

elif :

return True

else:

return

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 11

is path Solution (IV)

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

if blocked(x0, y0):

return False

elif y0 == 0:

return True

else:

return

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 12

is path Solution (V)

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

if blocked(x0, y0):

return False

elif y0 == 0:

return True

else:

return is path(blocked, x0-1, y0-1) or is path(blocked, x0, y0-1) \

or is path(blocked, x0+1, y0-1)

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 13

Variation I

def num paths(blocked, x0, y0):

"""Return the number of unoccupied paths that run from (X0, Y0)

to some square (x1, 0). BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge. """

For the previous predicate M, the result of num paths(M, 5, 6) is 1.
For the predicate M2, denoting this grid (missing (7, 1)):

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

the result of num paths(M2, 5, 6) is 5.

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 14

num paths Solution (I)

def num paths(blocked, x0, y0):

"""Return the number of unoccupied paths that run from (X0, Y0)

to some square (x1, 0). BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge. """

if blocked(x0, y0):

return

elif y0 == 0:

return

else:

return

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 15

num paths Solution (II)

def num paths(blocked, x0, y0):

"""Return the number of unoccupied paths that run from (X0, Y0)

to some square (x1, 0). BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge. """

if blocked(x0, y0):

return 0

elif y0 == 0:

return 1

else:

return

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 16

num paths Solution (III)

def num paths(blocked, x0, y0):

"""Return the number of unoccupied paths that run from (X0, Y0)

to some square (x1, 0). BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge. """

if blocked(x0, y0):

return 0

elif y0 == 0:

return 1

else:

return num paths(blocked, x0-1, y0-1) + num paths(blocked, x0, y0-1)

+ num paths(blocked, x0+1, y0-1)

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 17

Variation II

def find path(blocked, x0, y0):

"""Return a string containing the steps in an unoccupied

path from (X0, Y0) to some unoccupied square (x1, 0),

or None if not is path(BLOCKED, X0, Y0). BLOCKED is a

predicate such that BLOCKED(x, y) is true iff the

grid square at (x, y) is occupied or off the edge. """

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

Possible result of find path(M, 5, 6):

"(5, 6) (6, 5) (6, 4) (7, 3) (6, 2) (5, 1) (6, 0)"

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 18

find path Solution (I)

def find path(blocked, x0, y0):

"""Return a string containing the steps in an unoccupied

path from (X0, Y0) to some unoccupied square (x1, 0),

or None if not is path(BLOCKED, X0, Y0). BLOCKED is a

predicate such that BLOCKED(x, y) is true iff the

grid square at (x, y) is occupied or off the edge. """

if blocked(x0, y0):

return

elif y0 == 0:

return

else:

return

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 19

find path Solution (II)

def find path(blocked, x0, y0):

"""Return a string containing the steps in an unoccupied

path from (X0, Y0) to some unoccupied square (x1, 0),

or None if not is path(BLOCKED, X0, Y0). BLOCKED is a

predicate such that BLOCKED(x, y) is true iff the

grid square at (x, y) is occupied or off the edge. """

step = "({}, {})".format(x0, y0)

Alternative: step = str((x0, y0))

if blocked(x0, y0):

return None

elif y0 == 0:

return step

else:

return

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 20

find path Solution (III)

def find path(blocked, x0, y0):

"""Return a string containing the steps in an unoccupied

path from (X0, Y0) to some unoccupied square (x1, 0),

or None if not is path(BLOCKED, X0, Y0). BLOCKED is a

predicate such that BLOCKED(x, y) is true iff the

grid square at (x, y) is occupied or off the edge. """

step = "({}, {})".format(x0, y0)

if blocked(x0, y0):

return None

elif y0 == 0:

return step

else:

p = find path(blocks, x0-1, y0-1)

if p is not None: return p + " " + step

p = find path(blocks, x0, y0-1)

if p is not None: return p + " " + step

p = find path(blocks, x0+1, y0-1)

if p is not None: return step + " " + p

return None

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 21

find path Solution (IV)

def find path(blocked, x0, y0):

"""Return a string containing the steps in an unoccupied

path from (X0, Y0) to some unoccupied square (x1, 0),

or None if not is path(BLOCKED, X0, Y0). BLOCKED is a

predicate such that BLOCKED(x, y) is true iff the

grid square at (x, y) is occupied or off the edge. """

step = "({}, {})".format(x0, y0)

if blocked(x0, y0):

return None

elif y0 == 0:

return step

else:

for x in (x0-1, x0, x0+1):

p = find path(blocks, x, y0-1)

if p is not None: return p + " " + step

return None

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 22

A Change in Problem

• Suppose we changed the definition of “path” for the maze problems
to allow paths to go left or right without going down.

• And suppose we changed solutions in the obvious way, adding clauses
for the (x0 − 1, y0) and (x0 + 1, y0) cases.

• Will this work? What would happen?

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 23

And a Little Analysis

• All our linear recursions took time proportional (in some sense) to
the size of the problem.

• What about is path?

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 24

And a Little Analysis

• All our linear recursions took time proportional (in some sense) to
the size of the problem.

• What about is path? Each call spawns up to three others, up to y0
“generations.” That means the number of possible calls could be as
many as 3y0—exponential growth.

Last modified: Sun Feb 19 15:36:10 2017 CS61A: Lecture #7 25

	Public-Service Announcement
	Lecture #7: Tree Recursion
	Tree Recursion
	What About This?
	Finding a Path
	Path-Finding Program
	is_path Solution (I)
	is_path Solution (II)
	is_path Solution (III)
	is_path Solution (IV)
	is_path Solution (V)
	Variation I
	num_paths Solution (I)
	num_paths Solution (II)
	num_paths Solution (III)
	Variation II
	find_path Solution (I)
	find_path Solution (II)
	find_path Solution (III)
	find_path Solution (IV)
	A Change in Problem
	And a Little Analysis

