
Announcements

• Computer-Science Mentors (CSM) will be opening section signups
tonight (Monday, Jan. 30) at 8pm. Details will appear on Piazza.

• Starting this Friday, I’ll start a series of extra lectures for those
who want them, 4:30-6:00PM in 306 Soda, covering various topics we
don’t have room for. It is completely optional, and is not intended
to help you with the course. Sign up for 1 unit of CS198 P/NP under
CCN 34691 if interested. To get the unit, attendance required, and
a few homeworks.

• HW 2 will be released today. Due next Monday.

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 1

Lecture #6: Recursion

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 2

Philosophy of Functions (I)

def sqrt(x):

"""Assuming X >= 0,

returns approximation to square root of X."""

Syntactic specification (signature)

Precondition

Postcondition

Semantic specification

• Specifies a contract between caller and function implementor.

• Syntactic specification gives syntax for calling (number of argu-
ments).

• Semantic specification tells what it does:

– Preconditions are requirements on the caller.

– Postconditions are promises from the function’s implementor.

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 3

Philosophy of Functions (II)

• Ideally, the specification (syntactic and semantic) should suffice to
use the function (i.e., without seeing the body).

• There is a separation of concerns here:

– The caller (client) is concerned with providing values of x, a, b,
and c and using the result, but not how the result is computed.

– The implementor is concerned with how the result is computed,
but not where x, a, b, and c come from or how the value is used.

– From the client’s point of view, sqrt is an abstraction from the
set of possible ways to compute this result.

– We call this particular kind functional abstraction.

• Programming is largely about choosing abstractions that lead to clear,
fast, and maintainable programs.

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 4

Philosophy of Functions (III)

• Each function should have exactly one, logically coherent and well
defined job.

– Intellectual manageability.

– Ease of testing.

• Functions should be properly documented, either by having names
(and parameter names) that are unambiguously understandable, or
by having comments (docstrings in Python) that accurately describe
them.

– Should be able to understand code that calls a function without
reading the body of the function.

• Don’t Repeat Yourself (DRY).

– Simplifies revisions.

– Isolates problems.

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 5

Philosophy of Functions (IV)

• Corollary of DRY: Make functions general

– copy-paste leads to maintenance headaches

• Taking two (nearly) repeated sections of program code and turning
them into calls to a common function is an example of refactoring.

• Keep names of functions and parameters meaningful:

Instead of Use
boolean turn is over

d dice
helper take turn

(Bowling example From Kernighan&Plauger):
y score
L ball
f frame

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 6

Simple Linear Recursions (Review)

• We’ve been dealing with recursive function (those that call them-
selves, directly or indirectly) for a while now.

• From Lecture #3:
def sum squares(N):

"""The sum of K**2 for K from 1 to N (inclusive)."""

if N < 1:

return 0

else:

return N**2 + sum squares(N - 1)

• This is a simple linear recursion, with one recursive call per function
instantiation.

• Can imagine a call as an expansion:

sum squares(3) => 3**2 + sum squares(2)

=> 3**2 + 2**2 + sum squares(1)

=> 3**2 + 2**2 + 1**2 + sum squares(0)

=> 3**2 + 2**2 + 1**2 + 0 => 14

• Each call in this expansion corresponds to an environment frame,
linked to the global frame, as shown here.

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 7

http://pythontutor.com/composingprograms.html#code=def+sum_squares%28N%29%3A%0A++++if+N+%3C+1%3A%0A++++++++return+0%0A++++else%3A%0A++++++++return+N**2+%2B+sum_squares%28N+-+1%29%0Aprint%28sum_squares%283%29%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Tail Recursion

• We’ve also seen a special kind of linear recursion that is strongly
linked to iteration:

def sum squares(N):

"""The sum of K**2

for 1 <= K <= N."""

accum = 0

k = 1

while k <= N:

accum += k**2

k += 1

return accum

def sum squares(N):

"""The sum of K**2

for 1 <= K <= N."""

def part sum(k, accum):

if k <= N:

return part sum(k+1, accum + k**2)

else:

return accum

part sum(1, 0)

• The right version is a tail-recursive function: the recursive call is
either the returned value or very last action performed.

• The environment frames correspond to the iterations of the loop on
the left, as shown here.

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 8

http://pythontutor.com/composingprograms.html#code=def+sum_squares%28N%29%3A%0A++++def+part_sum%28k,+accum%29%3A%0A++++++++if+k+%3C%3D+N%3A%0A++++++++++++return+part_sum%28+k%2B1,+accum+%2B+k**2%29%0A++++++++else%3A%0A+++++++++++return+accum%0A++++part_sum%281,+0%29%0A%0Aprint%28sum_squares%283%29%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Recursive Thinking

• So far in this lecture, I’ve shown recursive functions by tracing or
repeated expansion of their bodies.

• But when you call a function from the Python library, you don’t look
at its implementation, just its documentation (“the contract”).

• Recursive thinking is the extension of this same discipline to func-
tions as you are defining them.

• When implementing sum squares, we reason as follows:

– Base case: We know the answer is 0 if there is nothing to sum
(N < 1).

– Otherwise, we observe that the answer is N 2 plus the sum of the
positive integers from 1 to N − 1.

– But there is a function (sum squares) that can compute 1 + . . . +
N − 1 (its comment says so).

– So when N ≥ 1, we should return N 2 + sum squares(N − 1).

• This “recursive leap of faith” works as long as we can guarantee we’ll
hit the base case.

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 9

Recursive Thinking in Mathematics

• To prevent an infinite recursion, must use this technique only when

– The recursive cases are “smaller” than the input case, and

– There is a minimum “size” to the data, and

– All chains of progressively smaller cases reach a minimum in a
finite number of steps.

• We say that such “smaller than” relations are well founded.

• We have

Theorem (Noetherian Induction): Suppose≺ is a well-founded
relation and P is some property (predicate) such that when-
ever P (y) is true for all y ≺ x, then P (x) is also true. Then
P (x) is true for all x.

(After Emmy Noether 1882–1935, Göttingen and Bryn Mawr).

• More general than the “line of dominos” induction you may have en-
countered: If true for a base case b, and if true for k when true for
k − 1, then true for all k > b.

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 10

A Problem

def find first(start, pred):

"""Find the smallest k >= START such that PRED(START)."""

?

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 11

Subproblems and Self-Similarity

• Recursive routines arise when solving a problem naturally involves
solving smaller instances of the same problem.

• A classic example where the subproblems are visible is Sierpinski’s
Triangle (aka bit Sierpinski’s Gasket).

• This triangle may be formed by repeatedly replacing a figure, ini-
tially a solid triangle, with three quarter-sized images of itself (1/2
size in each dimension), arranged in a triangle:

• Or we can think creating a “triangle of order N and size S” by draw-
ing either

– a solid triangle with side S if N = 0, or

– three triangles of size S/2 and order N−1 arranged in a triangle.

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 12

The Gasket in Python

• We can describe this as a recursive Python program that produces
Postscript output.

sin60 = sqrt(3) / 2

def make gasket(x, y, s, n, output):

"""Write Postscript code for a Sierpinski’s gasket of order N

with lower-left corner at (X, Y) and side S on OUTPUT."""

if n == 0:

draw solid triangle(x, y, s, output)

else:

make gasket(x, y, s/2, n - 1, output)

make gasket(x + s/2, y, s/2, n - 1, output)

make gasket(x + s/4, y + sin60*s/2, s/2, n - 1, output)

def draw solid triangle(x, y, s, output):

"Draw a solid triangle lower-left corner at (X, Y) and side S."

print("{x} {y} moveto " # Go x, y

"{s} 0 rlineto " # Horizontal move by s units

"-{mid} {alt} rlineto " # Move up and to left

"closepath fill" # Close path and fill with black

.format(x=x, y=y, s=s, mid=s/2, alt=s*sin60), file=output)

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 13

Aside: Using the Functions

• Just to complete the picture, we can use make gasket to create a
standalone Postscript file on a given file.

def draw gasket(n, output=sys.stdout):

print("%!", file=output)

make gasket(100, 100, 400, 8, output)

print("showpage", file=output)

output.flush() # Make sure all output so far is written

• And just for fun, here’s some Python magic to display triangles au-
tomatically (uses gs, the Ghostscript interpreter for Postscript).

from subprocess import Popen, PIPE, DEVNULL

def make displayer():

"""Create a Ghostscript process that displays its input (sent in through

.stdin)."""

return Popen("gs", stdin=PIPE, stdout=DEVNULL)

>>> d = make displayer()

>>> draw gasket(5, d.stdin)

>>> draw gasket(10, d.stdin)

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 14

Aside: The Gasket in Pure Postscript

• One can also perform the logic to generate figures in Postscript
directly, which is itself a full-fledged programming language:

%!

/sin60 3 sqrt 2 div def

/make_gasket {

dup 0 eq {

3 index 3 index moveto 1 index 0 rlineto 0 2 index rlineto

1 index neg 0 rlineto closepath fill

} {

3 index 3 index 3 index 0.5 mul 3 index 1 sub make_gasket

3 index 2 index 0.5 mul add 3 index 3 index 0.5 mul

3 index 1 sub make_gasket

3 index 2 index 0.25 mul add 3 index 3 index 0.5 mul add

3 index 0.5 mul 3 index 1 sub make_gasket

} ifelse

pop pop pop pop

} def

100 100 400 8 make_gasket showpage

Last modified: Sun Feb 19 15:11:54 2017 CS61A: Lecture #6 15

	Announcements
	Lecture #6: Recursion
	Philosophy of Functions (I)
	Philosophy of Functions (II)
	Philosophy of Functions (III)
	Philosophy of Functions (IV)
	Simple Linear Recursions (Review)
	Tail Recursion
	Recursive Thinking
	Recursive Thinking in Mathematics
	A Problem
	Subproblems and Self-Similarity
	The Gasket in Python
	Aside: Using the Functions
	Aside: The Gasket in Pure Postscript

