
Lecture #5: Higher-Order Functions

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 1

Do You Understand the Machinery? (I)

What is printed (0, 1, or error) and why?
def f():

return 0

def g():

print(f())

def h():

def f():

return 1

g()

h()

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 2

Answer (I)

The program prints 0. At the point that f is called, we are in the
situation shown below:

Global frame

f:

g:

h:

func f() [↑ Global]

func g() [↑ Global]

func h() [↑ Global]

fr1: h [↑ Global]

f: func f() [↑ fr1]
fr2: g [↑ Global]

h()

g()

f()

Global

fr1

fr2

def f():

return 0

def g():

print(f())

def h():

def f():

return 1

g()

h()

So we evaluate f in an environment (fr2) where it is bound to a function
that returns 0.

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 3

Do You Understand the Machinery? (II)

What is printed (0, 1, or error) and why?
def f():

return 0

g = f

def f():

return 1

print(g())

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 4

Answer (II)

The program prints 0 again:

def f():

return 0

g = f

def f():

return 1

print(g())

Global frame

g:

f: func f() [↑ Global]

func f() [↑ Global]

g()

At the time we evaluate f in the assignment to g, it has the value indi-
cated by the crossed-out dotted line, so that is the value g gets. The
fact that we change f’s value later is irrelevant, just as x = 3; y = x; x
= 4; print(y) prints 3 even though x changes: y doesn’t remember where
its value came from.

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 5

Do You Understand the Machinery? (III)

What is printed (0, 1, or error) and why?
def f():

return 0

def g():

print(f())

def f():

return 1

g()

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 6

Answer (III)

This time, the program prints 1. When g is executed, it evaluates the
name ‘f’. At the time that happens, f’s value has been changed (by the
third def), and that new value is therefore the one the program uses.

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 7

Do You Understand the Machinery? (IV)

What is printed: (1, infinite loop, or error) and why?
def g(x):

print(x)

def f(f):

f(1)

f(g)

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 8

Answer (IV)

This prints 1. When we reach f(1) inside f, the call expression, and
therefore the name f, evaluated in the environment E, where the value
of f is the global function bound to g:

def g(x):

print(x)

def f(f):

f(1)

f(g)

Global frame

g

f

func g() [↑ Global]

...

f1: f [↑ Global]

f f(1) evaluated here

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 9

Do You Understand the Machinery? (V)

What is printed: (0, 1, or error) and why?
def f():

return 0

def g():

return f()

def h(k):

def f():

return 1

p = k

return p()

print(h(g))

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 10

Answer (V)

This prints 0. Function values are attached to current environments
when they are first created (by lambda or def). Assignments (such as
to p) don’t themselves create new values, but only copy old ones, so
that when p is evaluated, it is equal to k, which is equal to g, which is
attached to the global environment.

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 11

Observation: Environments Reflect Nesting

• From what we’ve seen so far:

Linking of environment frames ⇐⇒ Nesting of definitions.

• For example, given

def f(x):

def g(x):

def h(x):

print(x)

...

...

The structure of the program tells you that the environment in
which print(x) is evaluated will always be a chain of 4 frames:

– A local frame for h linked to . . .

– A local frame for g linked to . . .

– A local frame for f linked to . . .

– The global frame.

• However, when there are multiple local frames for a particular func-
tion lying around, environment diagrams can help sort them out.

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 12

Do You Understand the Machinery? (VI)

What is printed: (0, 1, or error) and why?
def f(p, k):

def g():

print(k)

if k == 0:

f(g, 1)

else:

p()

f(None, 0)

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 13

Answer (VI)

This prints 0. There are two local frames for f when p() is called (f1
and f2). The call to p() creates an instantiation of g whose parent is f1.

def f(p, k):

def g():

print(k)

if k == 0:

f(g, 1)

else:

p()

f(None, 0)

Global frame

f func f(p,k) [↑ Global]

f1: f [↑ Global]

Nonep

0k

g func g() [↑ f1]

f2: f [↑ Global]

p

1k

g func g() [↑ f2]

f3: g [↑ f1]
Frame for p()

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 14

Decorators: Pythonic Use of Higher-Order Functions

• The syntax

@expr
def func(expr):

body

is equivalent to (“syntactic sugar for”)

def func(expr):
body

func = (expr)(func)

• For example, our ucb module defines decorator trace. After

from ucb import trace

@trace

def mysum(x, y):

return x + y

mysum will print its arguments and return value each time it is called.

• Usually, expr is a simple name, but it can be any expression that
evaluates to a function that takes and returns a function.

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 15

Implement trace

def trace(func):

"""A decorator that accepts the same arguments

and returns the same value as FUNC, but also

prints the arguments and return value."""

def afunc(arg):

print("Call", func. name , "with", arg)

v = func(arg)

print(func. name , "returns", v)

return v

return afunc

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 16

Implement trace (Fancier Version)

• At the moment, trace handles only one-argument functions.

• To handle more general ones, we use two Python features:

def trace(func):

"""A decorator that accepts the same arguments

and returns the same value as FUNC, but also

prints the arguments and return value."""

def afunc(*args): # args is now a list of actual parameters

print("Call", func. name , "with", args)

v = func(*args)

Line above is like v = func(args[0], args[1], ...)

print(func. name , "returns", v)

return v

return afunc

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 17

Design a Decorator

• I’d like a decorator that will check that the output of a function
obeys some predicate:

@check result(lambda x: x < 1000)

def compute(x):

...

return whatever # value of whatever must be < 1000.

• How would you define check result?

• It must return a function that

– Takes a function, say func, as input

– Returns a function that takes the same arguments as func and
returns the same value as func if that value satisfies PRED, but
complains otherwise.

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 18

A Decorator That Checks Results

@check result(lambda x: x < 1000)

def compute(x):

...

return whatever # value of whatever must be < 1000.

• We require that check result(lambda x: x < 1000)(compute) re-
turns a function that returns the same values as compute, but checks
that they are less than 1000 first.

• Let’s restrict ourselves to decorating 1-argument functions (like
compute).

• The check result function evidently takes a boolean function (pred-
icate) as its argument:

def check result(checker):

• And then returns another function that takes a function as its ar-
gument and returns a new one:

def checked func(func):

?

return checked func

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 19

Checking Decorator (continued)

• And this returned function must return still another function that
calls the decorated function (such as compute) and then checks it:

def check result(checker):

def checked func(func):

def call and check(x):

?

return call and check

return checked func

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 20

Checking Decorator (completed)

• Final result:
def check result(checker):

def checked func(func):

def call and check(x):

result = func(x)

if checker(result):

return result

else:

raise ValueError("bad result") # indicate an error

return call and check

return checked func

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 21

Higher-Order Functions at Work in Project #1

This project uses functions to represent aspects of playing a game:

• Strategy: Integer× Integer → Plan
(your score, opponent score) 7→ how to play

• Dice: → Integer
() 7→ random roll of die

Last modified: Sun Feb 19 14:55:31 2017 CS61A: Lecture #5 22

	Lecture #5: Higher-Order Functions
	Do You Understand the Machinery? (I)
	Answer (I)
	Do You Understand the Machinery? (II)
	Answer (II)
	Do You Understand the Machinery? (III)
	Answer (III)
	Do You Understand the Machinery? (IV)
	Answer (IV)
	Do You Understand the Machinery? (V)
	Answer (V)
	Observation: Environments Reflect Nesting
	Do You Understand the Machinery? (VI)
	Answer (VI)
	Decorators: Pythonic Use of Higher-Order Functions
	Implement trace
	Implement trace (Fancier Version)
	Design a Decorator
	A Decorator That Checks Results
	Checking Decorator (continued)
	Checking Decorator (completed)
	Higher-Order Functions at Work in Project #1

