
Announcements From Others

CodeBase

“CodeBase is a student-led consultancy that works with local startups to
build applications, future product iterations, and develop algorithms. This
semester, we’re working with three startups to create a cross-platform mo-
bile application, develop an Artificial Intelligence Chatbot, and build data in-
tegrations for internet-connected devices like Amazon Alexa. You can find
out more about us at codebase.berkeley.edu.”

Engineering Solutions at Berkeley

“Are you an engineering or computer science student interested in con-
sulting or internship-style projects? If so, apply now to Engineering Solutions
at Berkeley (ES)! ES is a new, pro-bono consulting club unlike any on campus.
We use our technical expertise to solve engineering challenges our corporate
partners contract to us during the school year. This year we are creating an
automated progress reporting system for a multinational construction com-
pany. One aspect of the project is using machine learning to perform predic-
tive analysis on how likely a project is to be completed on-time and on-budget
in real-time. If this sounds of any interest to anyone, come to our info-
session next Thursday, January 26th from 7-8 pm in 228 Dwinelle!!! RSVP
for the info-session here: https://goo.gl/forms/YH3JV4HTJJWn4GiF3 Apply
by 11:59 pm on Sunday, January 29th here: https://esberkeley.com/join/”

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 1

https://goo.gl/forms/YH3JV4HTJJWn4GiF3
https://esberkeley.com/join/

Official Announcements

• Test #1 is Friday, 17 February, 7–9PM. Rooms to be announced.

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 2

Lecture #4: Control (contd.) and Higher-Order
Functions

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 3

Indefinite Repetition

• With conditionals and function calls, we can conduct computations
of any length.

• For example, to sum the squares of all numbers from 1 to N (a pa-
rameter):

def sum squares(N):

"""The sum of K**2 for K from 1 to N (inclusive)."""

if N < 1:

return 0

else:

return N**2 + sum squares(N - 1)

• This will repeatedly call sum squares with decreasing values (down
to 1), adding in squares: Execute here

sum squares(3) => 3**2 + sum squares(2)

=> 3**2 + 2**2 + sum squares(1)

=> 3**2 + 2**2 + 1**2 + sum squares(0)

=> 3**2 + 2**2 + 1**2 + 0 => 14

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 4

http://pythontutor.com/composingprograms.html#code=def+sum_squares%28N%29%3A%0A++++if+N+%3C+1%3A%0A++++++++return+0%0A++++else%3A%0A++++++++return+N**2+%2B+sum_squares%28N+-+1%29%0Aprint%28sum_squares%283%29%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Explicit Repetition

• But in the Python, C, Java, and Fortran communities, it is more usual
to be explicit about the repetition.

• The simplest form is while:

while Condition:
Statements

means “If condition evaluates to a true value, execute statements
and repeat the entire process. Otherwise, do nothing.”

• The effect is (nearly) identical to

def loop():

if Condition:
Statements
loop()

loop() # Start things off

• . . . except that (for most Python implementations) the latter even-
tually runs out of memory; and we’ll have to do something about
assignments to variables in Statements (more on that later).

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 5

Sum squares Iteratively?

• Our original sum squares was

def sum squares(N):

"""The sum of K**2 for K from 1 to N (inclusive)."""

if N < 1:

return 0

else:

return N**2 + sum squares(N - 1)

• How do we do the same thing with a while loop?

def sum squares(N):

"""The sum of K**2 for K from 1 to N (inclusive)."""

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 6

Sum squares Iteratively (II)

def sum squares(N):

"""The sum of K**2 for K from 1 to N (inclusive)."""

result = 0

k = 1

while k <= N:

result += k**2

k += 1

return result

Execute this

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 7

http://pythontutor.com/composingprograms.html#code=def+sum_squares%28N%29%3A%0A++++%22%22%22The+sum+of+K**2+for+K+from+1+to+N+%28inclusive%29.%22%22%22%0A++++result+%3D+0%0A++++k+%3D+1%0A++++while+k+%3C%3D+N%3A%0A++++++++result+%2B%3D+k**2%0A++++++++k+%2B%3D+1%0A++++return+result%0A%0Asum_squares%283%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Another Way

• Alternatively, I can make this a little shorter by adding the other
way:

def sum squares(N):

"""The sum of K**2 for K from 1 to N (inclusive)."""

result = 0

while N >= 1:

result += N**2 # Or result = result + N**2

N -= 1 # Or N = N-1

return result

Execute here

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 8

http://pythontutor.com/composingprograms.html#code=def+sum_squares%28N%29%3A%0A++++%22%22%22The+sum+of+K**2+for+K+from+1+to+N+%28inclusive%29.%22%22%22%0A++++result+%3D+0%0A++++while+N+%3E%3D+1%3A%0A++++++++result+%2B%3D+N**2+%0A++++++++N+-%3D+1%0A++++return+result%0Asum_squares%283%29&mode=edit&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D

Functions As Templates

• If we think of a function body as a template for a computation,
parameters are “blanks” in that template.

• For example:

def sum squares(N):

k, sum = 0, 0

while k <= N:

sum, k = sum+k**2, k+1

return sum

is a template for an infinite set of computations that add squares
of numbers up to 0, 1, 2, 3, . . . , in place of the N.

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 9

Functions on Functions

• Likewise, function parameters allow us to have templates with slots
for computations:

def summation(N, f):

k, sum = 1, 0

while k <= N:

sum, k = sum+f(k), k+1

return sum

• Generalizes sum squares. We can write sum squares(5) as:

def square(x):

return x*x

summation(5, square)

• or (if we don’t really need a “square” function elsewhere), we can
create the function argument anonymously on the fly:

summation(5, lambda x: x*x)

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 10

Lambda

• In Python, lambda is just an abbreviation.

• Writing lambda PARAMS: EXPRESSION is the same as writing NAME,
where NAME is a name that appears nowhere else in the program and
is defined by

def NAME(PARAMS):

return EXPRESSION

evaluated in the same environment in which the original lambda was.

• Now we can write any number of summations succinctly:

summation(10, lambda x: x**3) # Sum of cubes

summation(10, lambda x: 1 / x) # Harmonic series

summation(10, lambda k: x**(k-1) / factorial(k-1))

Approximate e**x

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 11

Functions that Produce Functions

• Functions are first-class values, meaning that we can assign them to
variables, pass them to functions, and return them from functions.

• Example: let’s generalize the class of functions that—like

def h(x): return sin(x) + cos(x)

—add the results of applying two functions to the same argument:

>>> def add func(f, g):

... """Return function that returns F(x)+G(x) for argument x."""

... def adder(x): #

... return f(x) + g(x) # or return lambda x: f(x) + g(x)

... return adder #

>>> from math import sin, cos, pi

>>> h = add func(sin, cos)

>>> sin(pi/4) + cos(pi/4)

1.414213562373095

>>> h(pi / 4)

1.414213562373095

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 12

Generalize!

• Let’s make a general function-combining function (that goes beyond
addition):

>>> def combine funcs(op):

... """combine funcs(OP)(f, g)(x) = OP(f(x), g(x))."""

... def combined(f, g):

... def val(x):

... return op(f(x), g(x))

... return val

... return combined

• Now add func itself can be constructed by a call to combine funcs:

>>> from operator import add

>>> add func =

>>> from math import sin, cos, pi

>>> h = add func(sin, cos)

>>> h(pi / 4)

1.414213562373095

• What do the environments look like here? Think about it and try it out.

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 13

http://pythontutor.com/composingprograms.html#code=def+combine_funcs%28op%29%3A%0A+++def+combined%28f,+g%29%3A%0A+++++++def+val%28x%29%3A%0A+++++++++++return+op%28f%28x%29,+g%28x%29%29%0A+++++++return+val%0A+++return+combined%0Afrom+operator+import+add%0Aadd_func+%3D+combine_funcs%28add%29%0Afrom+math+import+sin,+cos,+pi%0Ah+%3D+add_func%28sin,+cos%29%0Ah%28pi+/+4%29%0A&cumulative=true&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D&curInstr=0

Generalize!

• Let’s make a general function-combining function (that goes beyond
addition):

>>> def combine funcs(op):

... """combine funcs(OP)(f, g)(x) = OP(f(x), g(x))."""

... def combined(f, g):

... def val(x):

... return op(f(x), g(x))

... return val

... return combined

• Now add func itself can be constructed by a call to combine funcs:

>>> from operator import add

>>> add func = combine funcs(add)

>>> from math import sin, cos, pi

>>> h = add func(sin, cos)

>>> h(pi / 4)

1.414213562373095

• What do the environments look like here? Think about it and try it out.

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 14

http://pythontutor.com/composingprograms.html#code=def+combine_funcs%28op%29%3A%0A+++def+combined%28f,+g%29%3A%0A+++++++def+val%28x%29%3A%0A+++++++++++return+op%28f%28x%29,+g%28x%29%29%0A+++++++return+val%0A+++return+combined%0Afrom+operator+import+add%0Aadd_func+%3D+combine_funcs%28add%29%0Afrom+math+import+sin,+cos,+pi%0Ah+%3D+add_func%28sin,+cos%29%0Ah%28pi+/+4%29%0A&cumulative=true&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D&curInstr=0

The Environment Picture (I)

def combine funcs(op):

def combined(f, g):

def val(x):

return op(f(x),

g(x))

return val

return combined

add func =

combine funcs(add)

Global frame

combine funcs

add

add func

func combine funcs(op) [↑ Global]

func add(x,y) [↑ Global]

f1: combine funcs [↑ Global]

op

combined

Return
value

func combined(f, g) [↑ f1]

Legend: ↑ is short for “parent=”.

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 15

The Environment Picture (II)

def combine funcs(op):

def combined(f, g):

def val(x):

return op(f(x),

g(x))

return val

return combined

add func =

combine funcs(add)

h = add func(sin, cos)

Global frame

combine funcs

cos

sin

add

add func

h

func combine funcs(op) [↑ Global]

func add(x,y) [↑ Global]

func cos(x) [↑ Global]

func sin(x) [↑ Global]

f1: combine funcs [↑ Global]

op

combined

Return
value

func combined(f, g) [↑ f1]

f2: combined [↑ f1]

f

g

val

Return
value

(to sin)

(to cos)

func val(x) [↑ f2]

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 16

The Environment Picture (III)

def combine funcs(op):

def combined(f, g):

def val(x):

return op(f(x), g(x))

return val

return combined

add func =

combine funcs(add)

h = add func(sin, cos)

h(-5)

f3: val [↑ f2]

-5x

10Return
value

+ local frames for calls to
• add (value of op),
• sin (value of f), and
• cos (value of g)

Global frame

combine funcs

cos

sin

add

add func

h

func combine funcs(op) [↑ Global]

func add(x,y) [↑ Global]

func cos(x) [↑ Global]

func sin(x) [↑ Global]

f1: combine funcs [↑ Global]

op

combined

Return
value

func combined(f, g) [↑ f1]

f2: combined [↑ f1]

f

g

val

Return
value

(to sin)

(to neg)

func val(x) [↑ f2]

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 17

A Fancy Example

• What does Python print, and why?

>>> def chain(n):

... return lambda which: n if which else chain(n + 1)

>>> g1 = chain(1)

>>> g1(True)

>>> g2 = g1(False)

>>> g2

>>> g2(True)

>>> g2(False)(True)

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 18

A Fancy Example

• What does Python print, and why?

>>> def chain(n):

... return lambda which: n if which else chain(n + 1)

>>> g1 = chain(1)

>>> g1(True)

1

>>> g2 = g1(False)

>>> g2

>>> g2(True)

>>> g2(False)(True)

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 19

A Fancy Example

• What does Python print, and why?

>>> def chain(n):

... return lambda which: n if which else chain(n + 1)

>>> g1 = chain(1)

>>> g1(True)

1

>>> g2 = g1(False)

>>> g2

<function chain...>

>>> g2(True)

>>> g2(False)(True)

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 20

A Fancy Example

• What does Python print, and why?

>>> def chain(n):

... return lambda which: n if which else chain(n + 1)

>>> g1 = chain(1)

>>> g1(True)

1

>>> g2 = g1(False)

>>> g2

<function chain...>

>>> g2(True)

2

>>> g2(False)(True)

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 21

A Fancy Example

• What does Python print, and why?

>>> def chain(n):

... return lambda which: n if which else chain(n + 1)

>>> g1 = chain(1)

>>> g1(True)

1

>>> g2 = g1(False)

>>> g2

<function chain...>

>>> g2(True)

2

>>> g2(False)(True)

3

Last modified: Sun Feb 19 01:42:48 2017 CS61A: Lecture #4 22

	Announcements From Others
	Official Announcements
	Lecture #4: Control (contd.) and Higher-Order Functions
	Indefinite Repetition
	Explicit Repetition
	Sum_squares Iteratively?
	Sum_squares Iteratively (II)
	Another Way
	Functions As Templates
	Functions on Functions
	Lambda
	Functions that Produce Functions
	Generalize!
	The Environment Picture (I)
	The Environment Picture (II)
	The Environment Picture (III)
	A Fancy Example

