
Lecture #3: Recap of Function Evaluation; Control

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 1

Summary: Environments

• Environments map names to values.

• They consist of chains of environment frames.

• An environment is either a global frame or a first (local) frame
chained to a parent environment (which is itself either a global frame
or . . .).

• We say that a name is bound to a value in a frame.

• The value (or meaning) of a name in an environment is the value it is
bound to in the first frame, if there is one, . . .

• . . . or if not, the meaning of the name in the parent environment
(recursively).

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 2

A Sample Environment Chain

Global

mul:
x: 1
y: 12

x: 2

x: 3

Environ. 1

Environ. 2

Global

Environ. 1’s first frame

Environ. 1’s parent

Environ. 2’s first frame

Environ. 2’s parent

Value of
In x y
Global 1 12
Environ 1. 2 12
Environ 2. 3 12

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 3

Environments: Binding and Evaluation

• Every expression and statement is evaluated (executed) in an envi-
ronment, which determines the meaning of its names.

• Expressions and subexpressions (pieces of an expression) are eval-
uated in the same environment as the statement or expression con-
taining them.

• Assigning to a variable binds a value to it in (for now) the first frame
of the environment in which the assignment is executed.

• Def statements bind a name to a function value in the first frame
of the environment in which the def statement is executed.

• Calling a user-defined function creates a new local environment frame
that binds the function’s formal parameters to the operand values
(actual parameters) in the call.

• This new local frame is attached to an existing (parent) frame that
is taken from the function value that is called, forming a new local
environment in which the function’s body is evaluated.

• So far, the only parent frames we’ve seen have been global frames,
but we’ll see that it can get more complicated.

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 4

Example: Evaluation of a Call: sum square(3,4)

Global

square:
. . .
mul, abs. . .
. . .
sum square:

func square(x)[parent=Global]

func sum square(x, y)[parent=Global]

sum square(3,4)
25

square(x)+square(y)

square(3)
9

x*x

square(4)
16

x*x

A
x: 3
y: 4 A

A Ax: 3
B
x: 4

B

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 5

What Does This Do (And Why)?

def id(x):

return x

print(id(id)(id(13)))

Execute this

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 6

http://pythontutor.com/composingprograms.html#code=def+id%28x%29%3A%0A++++return+x%0Aprint%28id%28id%29%28id%2813%29%29%29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=%5B%5D&curInstr=11

Answer

def id(x):

return x

print(id(id)(id(13)))

• We’ll denote the user-defined function value created by def id():. . .
by the shorthand id .

• Evaluation proceeds like this:

id(id)(id(13))

=⇒ id (id)(id (13))

=⇒ id (id (13))

(because first id call returns its argument).

=⇒ id (13))

(because inner id call returns its argument).

=⇒ 13

(because call to returned id value returns its argument).

• Important: There is nothing new on this slide! Everything follows
from what you’ve seen so far.

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 7

Nested Functions

• In lecture #2, I had this example:

def incr(n):

def f(x):

return n + x

return f

incr(5)(6)

• We evaluated the argument to print by substitution:

incr(5) ===>
def f(x): return 5 + x

return f
===> λ x: 5 + x

incr(5)(6) ===> (λ x: 5 + x)(6) ===> 5 + 6 ===> 11

• So how does this work with environments?

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 8

Environments for incr (I)

def incr(n):

def f(x):

return n + x

return f

Break incr(5)(6)

into two steps:

g = incr(5)

print(g(6))

Global

incr:
g:

func incr(n)[parent=Global]

f1

n: 5
f:

Returns:

func f(n)[parent=f1]

Evaluate body of
incr here:

Evaluate incr(5) here:

• The parent points of incr is Global because the defintion of incr was
evaluated in the global environment.

• The parent pointer for the value of g (returned by incr(5)) is f1, not
Global, because the definition of f was evaluated in f1.

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 9

Environments for incr (II)

def incr(n):

def f(x):

return n + x

return f

g = incr(5)

print(g(6))

Global

incr:
g:

func incr(n)[parent=Global]

f1

n: 5
f:

Returns:

func f(n)[parent=f1]

f2

x: 6

Returns: 11

Evaluate g(6) here

Evaluate body of
g (i.e., f) here

• f2 gets its parent pointer from g’s value, since it is the local frame
for evaluating a call to g. (Same rule for f1.)

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 10

Recap

• Every expression or statement is evaluated in an environment—a se-
quence of frames.

• Every frame (except the global frame) is linked to a parent frame.

• Every function value is linked to the environment in which its def is
evaluated.

• Every function call creates a new local frame that is linked to the
same frame as the function value being called.

• The total effect is the same as for the substitution model, but we
can also handle changes in the values of variables.

• Looking ahead, there are still two constructs—global and nonlocal—
that will require additions.

• But what we have here basically covers how names work in most of
Python.

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 11

Control

• The expressions we’ve seen evaluate all of their operands in the
order written.

• While there are very clever ways to do everything with just this
[challenge!], it’s generally clearer to introduce constructs that con-
trol the order in which their components execute.

• A control expression evaluates some or all of its operands in an order
depending on the kind of expression, and typically on the values of
those operands.

• A statement is a construct that produces no value, but is used solely
for its side effects.

• A control statement is a statement that, like a control expression,
evaluates some or all of its operands, etc.

• We typically speak of statements being executed rather than eval-
uated, but the two concepts are essentially the same, apart from
the question of a value.

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 12

Conditional Expressions (I)

• The most common kind of control is conditional evalutation (execu-
tion).

• In Python, to evaluate

TruePart if Condition else FalsePart

– First evaluate Condition.

– If the result is a “true value,” evaluate TruePart; its value is then
the value of the whole expression.

– Otherwise, evaluate FalsePart; its value is then the value of the
whole expression.

• Example: If x is 2:

1 / x if x != 0 else 1
1 / x if 2 != 0 else 1
=⇒ 1 / x if True else 1
=⇒ 1 / x
=⇒ 1 / 2
=⇒ 0.5

If x is 0:

1 / x if x != 0 else 1
1 / x if 0 != 0 else 1
=⇒ 1 / x if False else 1
=⇒ 1
=⇒ 1

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 13

“True Values”

• Conditions in conditional constructs can have any value, not just True
or False.

• For convenience, Python treats a number of values as indicating
“false”:

– False

– None

– 0

– Empty strings, sets, lists, tuples, and dictionaries.

• All else is a “true value” by default.

• For example: 13 if 0 else 5 and 13 if [] else 5 both evaluate to 5.

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 14

Conditional Expressions (II)

• To evaluate

Left and Right

– Evaluate Left.

– If it is a false value, that becomes the value of the whole expres-
sion.

– Otherwise the value of the expression is that of Right.

• This is an example of something called “short-circuit evaluation.”

• For example,

5 and "Hello" =⇒ "Hello" .

[] and 1 / 0 =⇒ [] . (1/0 is not evaluated.)

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 15

Conditional Expressions (III)

• To evaluate

Left or Right

– Evaluate Left.

– If it is a true value, that becomes the value of the whole expres-
sion.

– Otherwise the value of the expression is that of Right.

• Another example of “short-circuit evaluation.”

• For example,

5 or "Hello" =⇒ 5 .

[] or "Hello" =⇒ "Hello" .

[] or 1 / 0 =⇒ ? .

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 16

Conditional Statement

• Finally, this all comes in statement form:

if Condition1:
Statements1 # Indented blocks are called suites

... # They group statements

elif Condition2:
Statements2
...

...
else:

Statementsn
...

• Execute (only) Statements1 if Condition1 evaluates to a true value.

• Otherwise execute Statements2 if Condition2 evaluates to a true
value (optional part).

• . . .

• Otherwise execute Statementsn (optional part).

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 17

Example

Alternative Definition

def signum(x): def signum(x):

if x > 0: return 1 if x > 0 else 0 if x == 0 else -1

return 1

elif x == 0:

return 0

else:

return -1

Last modified: Sat Feb 18 22:56:06 2017 CS61A: Lecture #3 18

	Lecture #3: Recap of Function Evaluation; Control
	Summary: Environments
	A Sample Environment Chain
	Environments: Binding and Evaluation
	Example: Evaluation of a Call: sum_square(3,4)
	What Does This Do (And Why)?
	Answer
	Nested Functions
	Environments for incr (I)
	Environments for incr (II)
	Recap
	Control
	Conditional Expressions (I)
	``True Values''
	Conditional Expressions (II)
	Conditional Expressions (III)
	Conditional Statement
	Example

