
Lecture #2: Functions, Expressions, Environments

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 1

Public-Service Announcement

“Berkeley Consulting is a student-run consulting group on cam-
pus. We are a group of 30 students that complete 4 projects a
semester for Fortune 500 firms, startups, and nonprofit organi-
zations. We solve problems for and provide solutions to compa-
nies from all industries like Google, Dropbox and Khan Academy.
We are currently recruiting and would love to have you join us!
We are looking for students from all majors who are driven, crit-
ical thinkers, team players, and able to think outside the box. If
you are interested in joining up please visit bc.berkeley.edu for
more information. Also make sure to come to one of our info ses-
sions on January 24th and 26th to learn more and attend our case
workshop on January 27th to prepare for the interview process.
We hope to see you at one of our events next week!”

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 2

bc.berkeley.edu

From Last Time

• From last lecture: Values are data we want to manipulate and in
particular,

• Functions are values that perform computations on values.

• Expressions denote computations that produce values.

• Today, we’ll look at them in some detail at how functions operate on
data values and how expressions denote these operations.

• As usual, although our concrete examples all involve Python, the ac-
tual concepts apply almost universally to programming languages.

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 3

Functions

• For this lecture, we’re going to use this notation to show function
values (which are created by evaluating function definitions):

abs(number): add(left, right)

(We’ll simplify this in a bit to make it easier to write.)

• The green parenthesized lists indicate the number of parameter
values or inputs the functions operate on (this information is also
known as a function’s signature).

• For our purposes, the blue name is simply a helpful comment to sug-
gest what the function does, and the specific (green) parameter
names are likewise just helpful hints.

• (Python actually maintains this intrinsic name and the parameter
names internally, but this is not a universal feature of programming
languages.)

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 4

Pure Functions

• The fundamental operation on function values is to call or invoke
them, which means giving them one value for each formal parameter
and having them produce the result of their computation on these
values:

abs(number):-5 ⊲

⊲ 5

add(left, right)(29, 13) ⊲

⊲ 42

• These two functions are pure: their output depends only on their
input parameters’ values, and they do nothing in response to a call
but compute a value.

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 5

Impure Functions

• Functions may do additional things when called besides returning a
value.

• We call such things side effects.

• Example: the built-in print function:

print(• • •)-5 ⊲

⊲ None

display text ’-5’

• Displaying text is print’s side effect. Its value, in fact, is generally
useless (always the null value).

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 6

Other Kinds of Impurity

• Most side-effects involve changing the value of some variable.

• Example: the function random.randint:

>>> random.randint(0, 100) # Random number in 0--100.

13

>>> random.randint(0, 100)

55 # Something must have changed!

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 7

Call Expressions

• A call expression denotes the operation of calling a function.

• Consider add(2, 3):

add
︸ ︷︷ ︸

Operator
(2
︸ ︷︷ ︸

Operand 0
, 3
︸ ︷︷ ︸

Operand 1
)

• The operator and the operands are all themselves expressions (re-
cursion again).

• To evaluate this call expression:

– Evaluate the operator (let’s call the value C);

– Evaluate the operands in the order they appear (let’s call the
values P0 and P1)

– Call C (which must be a function) with parameters P0 and P1.

• Together with the definitions for base cases (mostly literal expres-
sions and symbolic names), this describes how to evaluate any call.

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 8

Example: From Expression to Value

Let’s evaluate the expression mul(add(2, mul(0x4, 0x6)), add(0x3, 005)).
In the following sequence, values are shown in boxes .
Everything outside a box is an expression.

• mul
︸ ︷︷ ︸

(add
︸ ︷︷ ︸

(2
︸︷︷︸
,mul(0x4

︸ ︷︷ ︸
, 0x6
︸ ︷︷ ︸

)
︸ ︷︷ ︸

)
︸ ︷︷ ︸

, add(0x3
︸ ︷︷ ︸

, 005
︸ ︷︷ ︸

)
︸ ︷︷ ︸

)

•

mul(left, right)

(add(2, mul(0x4, 0x6)), add(0x3, 005))

•

mul(left, right)

(

add(left, right)

(2 ,

mul(left, right)

(4 ,
6)),

add(0x3, 005))

•

mul(left, right)

(

add(left, right)

(2 , 24), add(0x3,
Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 9

005))

•

mul(left, right)

(26 , add(0x3, 005))

•

mul(left, right)

(26 ,

add(left, right)

(3 , 5))

•

mul(left, right)

(26 , 8)

• 208 .

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 10

Example: Print

What about an expression with side effects?

print(• • •)

1. print(print(1), print(2))

2. ((1), print(2))

3. (None , print(2))
and print ‘1’.

4. (None , (2))

5. (None , None))
and print ‘2’.

6. None
and print ‘None None’.

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 11

Names

• Evaluating expressions that are literals is easy: the literal’s text
gives all the information needed.

• But how did I evaluate names like add, mul, or print?

• Deduction: there must be another source of information.

• We’ll first try a simple approach: substitution of values for names.

• This won’t cover all the cases, however, and so we’ll introduce the
concept of an environment.

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 12

Substitution

• Let’s try to explain the effect of

x = 3

y = x * 2

z = y ** x

by treating each assignment (=) as a definition.

• Thus, we get

x = 3 x = 3 x = 3 x = 3

y = x * 2 y = 3 * 2 y = 6 y = 6

z = y ** x z = y ** 3 z = 6 ** 3 z = 216

• That is, we replace names by their definitions (values).

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 13

Substitution and Functions

• Now consider a simple function definition:

def compute(x, y):

return (x * y) ** x

print(compute(3, 2))

• A def statement is sort of like an assignment, but specialized to
functional values.

• The def statement above defines compute to be “the function of x
and y that returns (xy)x.”

• Here, I’ll use a common notation for that (due to Church):

λ x, y : (xy)x.

• So after substitution for compute, we have

print((λ x, y : (xy)z) (3, 2))

• Now what?

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 14

Substitution and Formal Parameters

• A function call such as

(λ x, y : (xy)z) (3, 2)

from last slide is like a simultaneous assignment to or substitution
for x and y.

• So we replace the whole expression with

(3 · 2)3

and (eventually), just 216.

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 15

Getting Fancy

• What about this?
def incr(n):

def f(x):

return n + x

return f

print(incr(5)(6))

• The incr function returns a function. The argument to print then
calls this function on 6.

• What happens?

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 16

Answer

• First, deal with incr:

def incr(n):

def f(x):

return n + x

return f

print(incr(5)(6)) print((λ n: return λ x: n + x)(5)(6))

• The 5 now gets substituted for n:

print((λ x: 5 + x)(6)

• And 6 for x:

print(5 + 6)

• Finally giving

print(11)

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 17

Trouble

• Alas, this relatively simple (if tedious) approach doesn’t work.

• Example:

x = 4

x = 8

print(x)

• If we just substitute for the first x as before:

x = 4

x = 8 # or even worse: 4 = 8

print(4)

• . . . we get a wrong result (4 instead of 8).

• After one substitution, x isn’t around any more to substitute for.

• We need something stronger.

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 18

Environments

• An environment is a mapping from names to values.

• We say that a name is bound to a value in this environment.

• In its simplest form, it consists of a single global environment frame:

Global

abs:
. . .
pi: 3.1415926
. . .

radius: 10
. . .
square:

abs(x)

square(x)

return mul(x, x)

Pre-defined

Imported

Assigned
Assigned
by def

from math import pi

radius = 10

def square(x): return x**2

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 19

Slight Change of Notation

• You’ll be using the Python Tutor from time to time, which uses a
somewhat different notation for function values. Might as well get
used to it (we’ll explain the “parent=” stuff in a later lecture):

Global

abs:
. . .

pi: 3.1415926
. . .

radius: 10
. . .

square:

func abs(x) [parent=Global]

func square(x) [parent=Global]

Pre-defined

Imported

Assigned

Assigned
by def

from math import pi

radius = 10

def square(x): return x**2

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 20

Environments and Evaluation

• Every expression is evaluated in an environment, which supplies the
meanings of any names in it.

• Evaluating an expression typically involves first evaluating its subex-
pressions (the operators and operands of calls, the operands of con-
ventional expressions such as x*(y+z), . . .).

• These subexpressions are evaluated in the same environment as the
expression that contains them.

• Once their subexpressions (operator + operands) are evaluated, calls
to user-defined functions must evaluate the expressions and state-
ments from the definition of those functions.

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 21

Evaluating User-Defined Function Calls

• Consider the expression square(mul(x, x)) after executing

from operator import mul

def square(x):

return mul(x,x)

x = -2

Global

mul:
. . .
x: -2
. . .
square:

func mul(L,R)[parent=Global]

func square(x)[parent=Global]

square(mul(x,x))Evaluation
Environment Expression

Evaluation

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 22

Evaluating User-Defined Function Calls (II)

• First evaluate the subexpressions of square(mul(x, x)) in the global
environment:

Global

mul:
. . .

x: -2
. . .

square:

func mul(L,R)[parent=Global]

func square(x)[parent=Global]

square (mul (-2 , -2))

For short, just

mul and square below

• Evaluating subexpressions x, mul, and square take values from the
expression’s environment.

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 23

Evaluating User-Defined Functions Calls (III)

• Then perform the primitive multiply function:

Global

mul:
. . .

x: -2
. . .

square:

func mul(L,R[parent=Global])

func square(x)[parent=Global]

square (4)

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 24

Evaluating User-Defined Functions Calls (IV)

• To explain parameter to user-defined square function, extend envi-
ronment with a local environment frame, attached to the frame in
which square was defined (the global one in this case), and giving x
the operand value.

• Now replace original call with evaluating body of square in the new
local environment.

Global

mul:
. . .

x: -2
. . .

square:

x: 4

Parent Environment
Link

func mul(L,R)[parent=Global]

func square(x)[parent=Global]

square (4)

mul(x, x)

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 25

Evaluating User-Defined Functions Calls (V)

• When we evaluate mul(x, x) in this new environment, we get the same
value as before for mul, but the local value for x.

• When evaluating an identifier in a chain of environments, follow the
parent environment links to the first frame containing its definition.

Global

mul:
. . .

x: -2
. . .

square:

x: 4

func mul(L,R)[parent=Global]

func square(x)[parent=Global]

square (4)
16

mul (4 , 4)

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 26

So How Does This Help?

• The original problem that led to this whole environment diagram
thing was how to deal with:

x = 4

x = 8

print(x)

• Now it’s easy. Each time we assign to x, we create a new binding for
it in the current evaluation frame (replacing the old one, if any).

• We get the new (last assigned) value when we look up x in the modi-
fied environment.

Last modified: Sat Feb 18 02:57:00 2017 CS61A: Lecture #2 27

	Lecture #2: Functions, Expressions, Environments
	Public-Service Announcement
	From Last Time
	Functions
	Pure Functions
	Impure Functions
	Other Kinds of Impurity
	Call Expressions
	Example: From Expression to Value
	Example: Print
	Names
	Substitution
	Substitution and Functions
	Substitution and Formal Parameters
	Getting Fancy
	Answer
	Trouble
	Environments
	Slight Change of Notation
	Environments and Evaluation
	Evaluating User-Defined Function Calls
	Evaluating User-Defined Function Calls (II)
	Evaluating User-Defined Functions Calls (III)
	Evaluating User-Defined Functions Calls (IV)
	Evaluating User-Defined Functions Calls (V)
	So How Does This Help?

